

# Lunar Reconnaissance Orbiter Spacecraft & Objectives

Craig Tooley – LRO Project Manager NASA Goddard Space Flight Center craig.r.tooley@nasa.gov http://lunar.gsfc.nasa.gov/ 301.286.1158

2006 AIAA-Houston Annual Technical Symposium May 19, 2006







### Lunar Exploration Robotic Precursor Missions

"Starting no later than 2008, initiate a series of robotic missions to the Moon to prepare for and support future human exploration activities", NPSD-31

- Provide early information for human missions
  - Key knowledge needed for human safety and mission success
  - Infrastructure elements for eventual human benefit
  - Results will guide human exploration
- Resolve many unknowns are at the North and South Poles
  - Knowledge of the environment temperatures, lighting, etc.
  - Resources/deposits composition and physical nature
  - Terrain and surface properties dust characterization
  - Support infrastructure navigation/communication, beacons
- Make exploration more capable and sustainable
  - Surface systems
  - Operations
  - Science community









## LRO Follows in the Footsteps of the Apollo Robotic Precursors

- Apollo had three (Ranger, Lunar Orbiter and Surveyor) robotic exploration programs with 21 precursor missions from 1961-68
  - 1. Lunar Orbiters provided medium & high resolution imagery (1-2m resolution) which was acquired to support selection of Apollo and Surveyor landing sites.
  - 2. Surveyor Landers made environmental measurements including surface physical characteristics.
  - 3. Ranger hard landers took the first close-up photos of the lunar surface
- Exploration needs the above information to go to new sites AND resource data to enable sustainable exploration.



Lunar Orbiter ETU in Smithsonian Air & Space Museum, Washington DC



NASA's Goddard Space Flight Center



### 2008 Lunar Reconnaissance Orbiter (LRO)

First Step in the Robotic Lunar Exploration Program



### **LRO Objectives**

- Characterization of the lunar radiation environment, biological impacts, and potential mitigation. Key aspects of this objective include determining the global radiation environment, investigating the capabilities of potential shielding materials, and validating deep space radiation prototype hardware and software.
- Develop a high resolution global, three dimensional geodetic grid of the Moon and provide the topography necessary for selecting future landing sites.
- Assess in detail the resources and environments of the Moon's polar regions.
- High spatial resolution assessment of the Moon's surface addressing elemental composition, mineralogy, and Regolith characteristics



**Objective:** The Lunar Reconnaissance Orbiter (LRO) mission objective is to conduct investigations that will be specifically targeted to prepare for and support future human exploration of the Moon.





# LRO Project Implementing Organizations







# **LRO Mission Overview**

- Launch in late 2008 on a EELV into a direct insertion trajectory to the moon.
- On-board propulsion system used to capture at the moon, insert into and maintain 50 km mean altitude circular polar reconnaissance orbit.
- 1 year mission with extended mission options.
- Orbiter is a 3-axis stabilized, nadir pointed spacecraft designed to operate continuously during the primary mission.
- Investigation data products delivered to Planetary Data Systems (PDS) within 6 months of primary mission completion.







### LRO Instrument Suite is a Robust Response to Exploration Requirements

| INSTRUMI                                                          | ENT   | Key Data Products                                                                                                   | Exploration Benefits                                                                                                                | Science Benefits                                                                                            |
|-------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| CRATER<br>Cosmic Ray Telescope<br>for the Effects<br>of Radiation |       | Lunar and deep space radiation<br>environment and tissue<br>equivalent plastic response to<br>radiation             | Safe, lighter weight space<br>vehicles. Radiation environment<br>for human presence at the Moon<br>and journeys to Mars and beyond. | Radiation boundary conditions for<br>biological response . Map<br>radiation reflected from lunar<br>surface |
| DLRE<br>Diviner Lunar<br>Radiometer Experiment                    |       | 500 m scale maps of surface<br>temperature, albedo, rock<br>abundance, and ice stability                            | Measures thermal environment in<br>permanent shadow and permanent<br>light, ice depth map                                           |                                                                                                             |
| LAMP<br>Lyman Alpha<br>Mapping Project                            |       | Maps of frosts and landforms in permanently shadowed regions (PSRs).                                                | Locate potential water-ice on the<br>surface, image shadowed areas,<br>and map potential landing areas in<br>PSRs                   | Source, history, migration and deposition of polar volatiles                                                |
| LEND<br>Lunar Exploration<br>Neutron Detector                     |       | Maps of hydrogen in upper 1 m<br>of Moon at 10 km scales,<br>neutron albedo                                         | Locate potential water-ice in lunar<br>soil or concentrations of implanted<br>hydrogen                                              |                                                                                                             |
| LOLA<br>Lunar Orbiter<br>Laser Altimeter                          | 55 cm | ~25 m scale polar topography at<br>< 10 cm vertical, global<br>topography, surface slopes and<br>roughness          | Identify safe landing sites, image<br>shadowed regions, map potential<br>surface ice, improve gravity field<br>model                | Global topography and gravity for interior structure and geological evolution                               |
| LROC<br>Lunar Reconnaissance<br>Orbiter Camera                    |       | 1000's of 50cm/pixel images,<br>and entire Moon at 100m in UV,<br>Visible. Illumination conditions<br>of the poles. | Surface landing hazards and<br>some resource identification<br>including locations of near<br>constant solar illumination           | Tectonic, impact and volcanic processes, resource evaluation, and crustal evolution                         |
| Mini-RF<br>Technology Demonstration                               |       | X and S-band radar imaging and interferometry                                                                       | Demonstrate new lightweight SAR<br>and communication technologies,<br>locate potential water-ice                                    | Source, history, deposition of polar volatiles                                                              |



## **LRO Orbiter Configuration Overview**



\*(Some close-out covers removed for clarity)



## **LRO Modular Construction**





## **LRO Orbiter System Architecture**

- Spacecraft architecture emphasizes modularity through the use of standard interfaces
- Subsystems leverage prior GSFC designs





## **LRO Ground Segment Overview**





## LRO Data Volume and Downlink Margin

| LRO Daily Data Estimates |                                     |                                   |                    |                  |                            |  |      |   | Ka-Data I    | )ownlink Utlizati | on   |   |      |  |
|--------------------------|-------------------------------------|-----------------------------------|--------------------|------------------|----------------------------|--|------|---|--------------|-------------------|------|---|------|--|
| Data Source              | Data Volume<br>per Orbit<br>(Mbits) | Data Volume<br>per Day<br>(Gbits) | Files per<br>Orbit | Files per<br>Day | 50<br>45<br>40             |  |      |   | 1 D/L Time U | ed Time Remainin  | ıg   |   |      |  |
| Spacecraft HK            | 216.96                              | 2.76                              | 27.1               | 345.6            | 35 -                       |  |      |   |              |                   |      |   |      |  |
| CRaTER                   | 609.09                              | 7.76                              | 1.0                | 13.1             | 30 -                       |  |      |   |              |                   | 30 / |   | 30 / |  |
| Diviner                  | 274.24                              | 3.49                              | 34.3               | 459.0            | 25                         |  | 45.0 |   |              |                   | 00.4 |   |      |  |
| LAMP                     | 73.77                               | 0.94                              | 1.7                | 22.2             | 20 -                       |  |      |   |              |                   |      |   |      |  |
| LEND                     | 20.52                               | 0.26                              | 2.6                | 33.2             | 10                         |  |      |   | 26.4         |                   |      |   | ]    |  |
| LOLA                     | 110.11                              | 1.40                              | 13.8               | 234.1            | 5                          |  |      |   |              |                   |      |   |      |  |
| LROC NAC                 | 30,317.42                           | 386.35                            | 24.0               | 305.8            | 0                          |  |      |   |              |                   | 6.6  |   | 6.6  |  |
| LROC WAC                 | 3,204.43                            | 40.84                             | 3.0                | 38.2             | 0 +                        |  | 1    | I | 2            | I                 | 3    | I | 4    |  |
| Totals:                  | 34,826.54                           | 443.81                            | 107.42             | 1,451.29         | White Sands (WS1) Contacts |  |      |   |              |                   |      |   |      |  |

- Maximum daily data volume: ~450 Gbits
- Data stored in files within the spacecraft recorder
- Ka Downlink Utilization: ~47%
- S/C recorder provides ~1.3 days worth of storage (data volume dependant)



## **LRO Control Modes Overview**







## **The Moon-Centered LRO Universe**



- Twice a month, LRO's orbit will be in full view of the Earth for roughly 2 days.
- Twice a month, LRO will perform a momentum management maneuver while the ground has complete coverage.
- Once a month, LRO will perform a station-keeping (SK) maneuver while the ground has complete coverage.
- Twice a year, LRO's orbit will be in full view of the Sun for roughly one month.
- During the eclipse season, LRO will have a maximum lunar occultation of 48 minutes.
- LRO's orbit will be targeted such that lunar solstice occurs near maximum occultation.
- Twice a year, LRO will perform a 180° yaw maneuver.
- Twice a year, the Moon will pass through the Earth's shadow (Lunar Eclipse).



## **LRO Mission Timeline Summary**

| Phase                      | Entry                                 | <u>Exit</u>                           | <b>Duration</b>             | <u>Objectives</u>                                                                                                                         |
|----------------------------|---------------------------------------|---------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Launch                 | Start of LV Count-<br>down Sequence   | LV Lift-off                           | ~1 Day                      | <ul> <li>Configure Orbiter into Launch Mode</li> <li>Short Spacecraft Checkout</li> </ul>                                                 |
| Launch                     | LV Lift-off                           | Payload Separation                    | ~90 Minutes                 | Achieve Trans-Lunar Trajectory                                                                                                            |
| Early Cruise               | Payload Separation                    | Observing Mode                        | ~6 Hours                    | <ul> <li>Sun Acquisition and Ground Acquisition</li> <li>Deployments</li> <li>Initial MCC Planning</li> </ul>                             |
| Mid Cruise                 | Observing Mode                        | Completion of MCC                     | ~1 Day                      | <ul> <li>Propulsion Checks</li> <li>Final MCC Planning</li> <li>Execution of MCC Burn within L+24 hrs</li> </ul>                          |
| Late Cruise                | Completion of MCC                     | Start of LOI<br>Sequence              | ~3-4 Days                   | <ul> <li>LEND/CRaTER Early Turn-On Activities</li> <li>Spacecraft Functional Checkout</li> <li>LOI Planning</li> </ul>                    |
| Lunar Orbit<br>Acquisition | Start of LOI<br>Sequence              | Commissioning<br>Orbit                | ~4-6 Days                   | <ul> <li>Perform Lunar Orbit Capture Maneuver</li> <li>Achieve 30x216 km Commissioning Orbit</li> </ul>                                   |
| Commissioning              | Commissioning<br>Orbit                | Mission Orbit                         | Up to 60 Days               | <ul> <li>Spacecraft Checkout and Calibrations</li> <li>Instruments Checkout and Calibrations</li> <li>Mission Orbit Adjustment</li> </ul> |
| Nominal Mission            | Mission Orbit                         | After 1-Year<br>Nominal<br>Operations | 1-Year                      | <ul> <li>Routine Operations</li> <li>Non-Routine Operations</li> <li>Data Product Generation</li> </ul>                                   |
| Extended<br>Mission        | After 1-Year<br>Nominal<br>Operations | Impact                                | Up to 4<br>Additional Years | Goals to be Determined     Impact Prediction/Activities                                                                                   |
| End-of-Mission             | Impact                                | Completion of<br>Closeout Activities  | N/A                         | Finalize Mission Operations/Activities                                                                                                    |





## LRO Transfer Trajectory & Lunar Orbit Acquisition

### Launch: October 31, 2008 Lunar Orbit Insertion Sequence, 4 Maneuvers, Polar 2-4 Days Mapping Phase, **Minimum** 50 km Altitude Energy Circular Orbit, Lunar At least 1 Year Commissioning Transfer Phase, ~ 4 Days 30 x 216 km Altitude **Quasi-Frozen** Orbit. Up to 60 Days

**Nominal End of Mission: February 2010** 



# **LRO Mission Timeline**



Initial Acq. Timeline

MCC Timeline

LOI – 1 Timeline

## **LRO Typical Nominal Orbit Operations**



| Week 1 | Week 2              | Week 3 | Week 4                                                            |  |  |  |
|--------|---------------------|--------|-------------------------------------------------------------------|--|--|--|
|        | Momentum Management |        | Station-Keeping<br>Momentum Management<br>Instrument Calibrations |  |  |  |
|        |                     |        |                                                                   |  |  |  |

| Orbit 1 | Orbit 2 | Orbit 3 | Orbit 4 | Orbit 5  | Orbit 6 | Orbit 7 | Orbit 8 | Orbit 9 | Orbit 10 | Orbit 11 | Orbit 12 |
|---------|---------|---------|---------|----------|---------|---------|---------|---------|----------|----------|----------|
| S-B     | and     | ٩       | S/Ka    | <b>B</b> | Ø       | Ø       | Ø       | S-B     | and      | Ø        | Ø        |

| ~21 kbps                             | HV Decrease                  | ~0.8 kbps            | HV Increase    | LAMP                            |
|--------------------------------------|------------------------------|----------------------|----------------|---------------------------------|
|                                      |                              | Up to 9              | 0 kbps (flare) | CRaTER                          |
|                                      | <u>~0.2 kbps (non-flare)</u> |                      |                |                                 |
|                                      |                              | ~41 kbps             |                | Diviner                         |
|                                      |                              | ~3 kbps              |                | LEND                            |
|                                      |                              | ~17 kbps             |                | LOLA                            |
| WAC 🕳                                |                              | ~897 kbps            |                | _                               |
| NAC 1 ( ~256 MB)<br>NAC 2 ( ~256 MB) |                              |                      | : : ::::       | LROC                            |
| Shadow<br>~28 minutes Mo<br>Po       | on's<br>ole                  | un Light ~56.5 minut | es Moo<br>Po   | Shadow<br>n's ~28 minutes<br>le |





## **LRO Non-Routine Operations**

#### **Momentum Dumps**

- Performed twice a month when Earth has full orbit view
- One orbit allocated for activity
- Resets system momentum state
- Burn duration on order of secs
- Orbiter holds nadir attitude
- Performed with MOC support

#### **Station-Keeping**

- Performed monthly when Earth has full orbit view
- One orbit allocated for activity
- Consists of two burn sequence
- Coordinated with momentum management activity
- Sequences are 27.4 days apart
- Performed with MOC support

#### **Monthly Calibrations**

- S/C and payload calibrations
- 3 orbits allocated for activities
- Subset of calibrations performed during initial commissioning
- Planning meetings held throughout month to refine sequence
- Involves orbiter slew maneuvers
- Performed with MOC support

### Mini-RF Operations

- Minimum of 1 data collection opportunity each month
- Incorporated into monthly calibration activities
- Sequence timeline generated by Mini-RF POC
- Mini-RF ops constraints will be documented in the Mission Flight Rules and Constraints document

#### Yaw Maneuvers

- Performed every 6 months
- One orbit allocated for activity
- Takes approximately 15 minutes
- Consists of 180° yaw maneuver
- Thermal and power are main drivers governing execution
- Payload will remain operational
- Performed with MOC support

### Lunar Eclipses

- 2 to 4 occurrences per year
- 2009 lunar eclipses pose no threat to orbiter health and safety
- Baseline calls for low power state
- Design maturation and on-orbit performance will dictate measures



# **Station-Keeping**

- Station-keeping is done monthly
  - Fixed schedule, but robust to delays
- Strategy
  - Altitude controlled to within  $\pm 15$  km
  - Maneuvers are done when lunar longitude of ascending node is 270 deg
  - 12-month SK cost ( $\Delta V$ ) is 150 m/sec
- Repeatable Station-keeping cycle
  - Phase and altitude plots are same every sidereal period (27.4 days)
  - 2-burn sequence; 66 minutes apart
  - Costs ( $\Delta V$ ) are the same each month





## Lunar Eclipses

### • Lunar eclipses drive LRO worst case design

| Lunar Eclipses: 2009-2013 |                  |      |  |  |  |  |
|---------------------------|------------------|------|--|--|--|--|
| Date                      | Туре             | Time |  |  |  |  |
| 2009 Feb 09               | (2) Penumbral    | —    |  |  |  |  |
| 2009 Jul 07               | (1) Penumbral    | -    |  |  |  |  |
| 2009 Aug 06               | (1) Penumbral    | —    |  |  |  |  |
| 2009 Dec 31               | (2) Partial      | 1:02 |  |  |  |  |
| 2010 Jun 26               | (3) Partial      | 2:44 |  |  |  |  |
| 2010 Dec 21               | <b>(4)</b> Total | 3:29 |  |  |  |  |
| 2011 Jun 15               | <b>(4)</b> Total | 3:40 |  |  |  |  |
| 2011 Dec 10               | (4) Total        | 3:33 |  |  |  |  |
| 2012 Jun 04               | (3) Partial      | 2:08 |  |  |  |  |
| 2012 Nov 28               | (2) Penumbral    | —    |  |  |  |  |
| 2013 Apr 25               | (2) Partial      | 0:32 |  |  |  |  |
| 2013 May 25               | (1) Penumbral    | -    |  |  |  |  |
| 2013 Oct 18               | (2) Penumbral    | —    |  |  |  |  |







## **LRO Mission Schedule Overview**





### Implementation Schedule – Project Response

**LRO Development Proceeding Rapidly** 

### Avionics ETUs in Test at GSFC



**Rapid Instrument Development Examples** 

Propulsion/Deployment Electronics Power System Electronics

**Single Board Computer** 



LOLA EM detector

LOLA EM detector housing & beam expander







Breadboard

LAMP "Build to Print" Alice Predecessor

Rapid prototype model of CRaTER Telescope Assembly LROC NAC







## **Dimensional Layouts (Stowed)**





## **Dimensional Layouts (Deployed)**

