| ROSES | Solicitation or Program Element Title | Submitte
d | Selected* | %Selected | SMD Division | Avg
K\$/Yr | Notes * Selected means "encouraged" or "invited" for Step-1 proposals, depending. | |----------------------------|---|------------------------|-------------------------------------|--------------------------|--|------------------------|--| | 2022 /
2022 /
2022 / | Astroohysics Data Analysis
Astrophysics Research and Analysis
Astrophysics Theory Program | 176
147 | 48
38
see notes | 27%
26%
see notes | Astrophysics
Astrophysics
Astrophysics | | Six were declined non compliant
includes two partial selections. Four were declined non compliant.
Not Solicited This Year | | 2022
2022 | Neil Gehrels Swift Observatory General Investigator Cycle 19 Fermi General Investigator Cycle 16 Strategic Astrophysics Technology | 148
90
37 | 46
36
13 | 31%
40% | Astrophysics
Astrophysics
Astrophysics | | Includes on partial selection. Four were declined non compliant. | | 2022
2022 | Nancy Grace Roman Technology Fellowships for Early Career Researchers NuSTAR General Observer Cycle 9 TESS General Investigator Cycle 6 | 1
159
119 | 1
86
41 | 100%
54% | Astrophysics
Astrophysics | | | | 2022
2022 | NICER General Observer Cycle 5
Theoretical and Computational Astrophysics Networks
Astrophysics Pioneers | 136
35
11 | 65
4
2 | 48%
11%
18% | Astrophysics
Astrophysics
Astrophysics | | 7 were declined non compliant. One declined not compliant | | 2022 | Nancy Grace Roman Space Telescope Research and Support Participation Oppor
Lisa Preparatory Science
Astrophysics Decadal Survey Precursor Science | 91
35
48 | 30
8
10 | 23%
21% | Astrophysics
Astrophysics
Astrophysics | | One declined not compliant. Inclues two partial selections two were declined non compliant. | | 2022
2022
2022 | X-Ray Imaging and Spectroscopy Mission Guest Scientist Program
Extreme Precision Radial Velocity Foundation Science
Ultraviolet Transient Astronomy Satellite Participating Scientists Program | 49
14
34 | 21
5
14 | 43%
36%
41% | Astrophysics
Astrophysics
Astrophysics | | Two declined not compliant One declined not compliant. Four selected were no NASA funding. | | 2022 | Fundamental Physics Step-1 Fundamental Physics Stec-2 Physical Sciences Informatics | 30
21
14 | N/A
7 | 33% | Biological and Ph
Biological and Ph
Biological and Ph | vsical Sc | ince Three declined non compliant. Values in the columns to the left include two partial selections. Selectables | | 2022
2022
2022 | Space Biology Research Step-1
Space Biology Research Step-2
Research Pathfinder for Bewond LEO Space Biology Investigations Step-1 | 111
94
10 | N/A
11
N/A | N/A
12% | Biological and Ph
Biological and Ph
Biological and Ph | vsical Sc
vsical Sc | Sience 5 declined not compliant. | | 2022 | Research Pathfinder for Bevond LEO Soace Biology Investigations Step-2 Topical Workshoos, Symposia, and Conferences | 9
79
172 | 58 | 73% | Biological and Ph
Cross Division | | Selections include three partial selections | | | Excelanets Research Program Future Investigators in NASA Earth and Soace Science and Technology Astro Future Investigators in NASA Earth and Soace Science and Technology BPS | 172
264
40 | 31
27
2 | 18%
10%
5%
14% | Cross Division
Cross Division
Cross Division
Cross Division | | Four declined not compliant | | 2022 | Future Investigators in NASA Earth and Space Science and Technology Earth
Future Investigators in NASA Earth and Space Science and Technology Helio
Future Investigators in NASA Earth and Space Science and Technology Planetary.
Supplemental Open Source Software Awards | 77
216 | 24
39 | 31% | Cross Division
Cross Division
Cross Division | | 7 decined not compliant. | | 2022
2022
2022 | Citizen Science Seed Fundina Program Pawloads and Research Investigations on the Surface of the Moon Step-1 Payloads and Research Investigations on the Surface of the Moon Step-2 | 13
36
22 | 5
N/A
1 | 38% | Cross Division Cross Division Cross Division | | one declined not compliant | | 2022 | Transform to Open Science Training Honority Open-Source Science Economic, Social, and Policy Analyses of Orbital Debris and Space Sustainability | 34
20
10 | 16
6
3 | 47%
30%
30% | Cross Division
Cross Division
Cross Division | | Two declined not compliant, Selectables remain | | | NASA Innovation Corps
Multidomain Reusable Artificial Intelligence Tools | 10
18 | 8 | 40%
44% | Cross Division
Cross Division | | | | 2022 | Land Cover/ Land Use Change Step-1 Land Cover/ Land Use Change Step-2 Scooing Studies for the Next Terrestrial Ecology Field Campaign Country | 53
23
5
48 | N/A
11
2
18 | N/A
48%
40%
38% | Earth Science Earth Science Earth Science Earth Science | | Two declined not compliant. | | | Carbon Monitoring System: Continuing Prototype Product Development Physical Oceanography Ocean Vector Winds Science Team Aura Science Team and Atmospheric Composition Modeling and Analysis Program | 40
27
65 | 9
12
30 | 23% | Earth Science Earth Science Earth Science | | Two decimed not compliant. | | | Ocean Vector Wilds Science reads Aura Science Team and Atmospheric Composition Modeling and Analysis Program Airborne and Satellite Investigation of Asian Air Quality Terrestrial Hydrology Weather and Atmospheric Dynamics | 24
17
69 | 13
5
13 | 54%
29%
19% | Earth Science
Earth Science
Earth Science | | two declined not compliant
one declined not compliant | | | Weather and Amoscheric Dynamics Earth Surface and Interior Facilit Rescorose and Novel Research in Earth Science Earth Science U.S. Participating Investigator Making Earth System Data Records for Use in Research Environments | 45
11
21 | 17
6
9 | 38%
55%
43% | Earth Science Earth Science Earth Science Earth Science | Ē | Selectables remain | | 2022 | Earth Colones Research from Operational Constationary Potellite Contents | 69
137
59
47 | 25
30
9
23 | 15% | Earth Science Earth Science Earth Science Earth Science | | includes one "partial" selection One was declined for being not compliant. Selectables remain. February 2024 | | | Call Science Resident mon Comminion (Secondonian Salemini Systems Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission Validation Studies with ICESat-2 ECOSTRESS Science and Applications Team Earth Science Applications: Applications | 50
54
4 | 26
15 | 52% | Earth Science Earth Science Earth Science | | One was declined for being not compliant. Selectables remain, regressive 2024 One was declined for being not compliant. One was declined for being not compliant. | | 2022 | Earth Science Apolications: Annual Lannuaria (Commercial Smalls at Data Acquisition New Vendor Onramp Evaluation Commercial Smalls at Data Acquisition New Vendor Onramp Evaluation Commercial Smalls at Data Scientific Analysis | 33
55
72 | 15
39
22 | 71% | Earth Science
Earth Science | | | | | Commercial Smallsat Data Scientific Analysis
Advanced Component Technology
Acolications-Oriented Augmentations for Research and Analysis
Earth System Science for Building Coastat Resilience
Technology Development for Support of Wildling Science and Disaster Mitigation S | 57
11
24 | 13
8
6 | 73%
25% | Earth Science Earth Science Earth Science Earth Science | | two declined not compliant. One
of the selections was "partial" The six selected includes one partial selection | | 2022 | Technology Development for Support of Wildfire Science and Disaster Mitioation S
Technology Development for Support of Wildfire Science and Disaster Mitioation S
Earth Venture Suborbital-4
Land-Cover/Land-Use Change SARI Synthesis | 108
24
42 | 6 | | Earth Science
Earth Science
Earth Science | | One was declined for being not comoliant. Proposals were received 04/27/2023. Decisions expected in March 2024 | | 2022 | Land-CoverLand-Use Change SARI Synthesis Heliophysics Theory, Modeling and Simulations Step-1 Heliophysics Theory, Modeling and Simulations Step-2 | 64
50 | 11
N/A | 48%
N/A
19% | Earth Science Heliophysics Heliophysics | | Three were declined not compliant. | | | Heliophysics Guest Investigator Open Step-1 Heliophysics Guest Investigator Open Step-2 Living With a Star Science Step-1 | 99
87
40 | N/A
25
N/A | | Heliophysics
Heliophysics
Heliophysics | | one declined not compliant | | 2022 | Living With a Star Science Step-2 Space Weather Science Application Research-to-Operations-to-Research Step-1 | 39
22
17 | 12
N/A
4 | 31% | Heliophysics
Heliophysics
Heliophysics | | one declined not compliant | | | Soace Weather Science Acolication Research-to-Operations-to-Research Step-2-
Heliophysis: Technology and Instrument Development for Science
Heliophysis: Enchology and Instrument Development for Science
Heliophysics Liour Costl Access to Soace
Heliophysics Plicith Cooportunities Studies | 24
19
7 | 11
7
4 | 46%
37%
57% | Heliophysics
Heliophysics
Heliophysics | | one declined not compliant one declined not compliant | | 2022 | Heliophysics Data Environment Enhancements Heliophysics Early Career Investigator Program Step-1 Heliophysics Early Career Investigator Program Step-2 Heliophysics Innovations for Technology and Science | 54
47 | 1
N/A
13 | N/A
28% | Heliophysics
Heliophysics | | One declined not compliant 3 are still no decision February 2024 | | 2022 | Hetiophysics Inflored Steel Residence Machine Learning Ready Data Interdisciplinary Science for Eclipse Step-1 Interdisciplinary Science for Eclipse Step-2 | 20
39
36 | 4
N/A
5 | 20%
N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | a are sim no decision in contain 2024 2 selectables remain February 2024 | | 2022
2022
2022 | Heliophysics Tools and Mathods
Heliophysics Citizen Science Investigations
Space Weather Centers of Excellence | 18
8
17 | 6
3
4 | 33%
38%
24% | Heliophysics
Heliophysics
Heliophysics | | one of the four is a partial selection | | 2022 | Emerging Worlds
Solar System Workings
Planetary Data Archiving and Restoration | 34
84
27 | 17
37
8 | 44% | Planetary
Planetary
Planetary | | One declined not compliant. Selections include one partial and two that are no NASA funding. Two declined not combliant. Selections include one with no NASA funding. One declined not combliant. | | 2022
2022
2022 | Exobiology
Solar System Observations
New Ernnivers Data Analysis Step-1 | 60
20
30 | 14
8
N/A | 23%
40%
N/A | Planetary
Planetary
Planetary | | One declined not compliant. One declined not compliant. Selections include two partial | | 2022
2022
2022 | New Frontiers Data Analysis Step-2
Lunar Data Analysis Step-1
Lunar Data Analysis Step-2 | 22
46
34 | 11
N/A
8 | 50%
N/A
24% | Planetary
Planetary
Planetary | | One declined not compliant One declined not compliant | | 2022 | Mars Data Analysis Steo-1
Mars Data Analysis Steo-2
Cassini Data Analysis Steo-1 | 77
55
35 | N/A
15
N/A | N/A
27%
N/A | Planetary
Planetary
Planetary | | | | 2022 | Cassini Data Analysis Steo-2
Discovery Data Analysis
Planetary Instrument Concepts for the Advancement of Solar System Observations
Maturation of Instruments for Solar System Exploration | 16
18 | 9 | 30%
56%
50%
14% | Planetary
Planetary
Planetary
Planetary | | Selections include one "partial" | | 2022
2022 | Manufación or instruments for Social System Exporation Planetary Protection Research Laboratory Analysis of Returned Samoles Planetary Science Enabling Facilities | 15
12
25 | 5
7 | 33%
58%
40% | Planetary
Planetary
Planetary | | Selections include three partial selections | | 2022
2022
2022 | Planetary Science Early Career Award Development and Advancement of Lunar Instrumentation Interdisciplinary Consortia for Astrobiology Research | 32
33
28 | 5
4
8 | 16%
12%
29% | Planetary
Planetary
Planetary | | Selections include one "partial" | | | Yeartiv Ocoortunities for Research in Pfanetary Defense
Analon Activities to Support Artemis Lunar Operations (D-RATS)
Marisan Moons Exploration Participating Scientist Program | 18
33
49 | 8
13
10 | | Planetary
Planetary
Planetary | | One declined non-compliant | | 2022 | Arternis III Geology Tearn
Apollo Next Generation Sample Analysis Program
Precursor Science Investigations for Europa | 7
28 | 3
5 | | Planetary
Planetary
Planetary | | One declined not compliant. | | 2021
2021
2021 | Astrophysics Data Analysis Astrophysics Research and Analysis Astrophysics Theory Program Neil Gehrels Swift Observatory General Investigator Cycle 18 | 214
155
181 | 48
57
47 | | Astrophysics
Astrophysics
Astrophysics | | 5 Were declined not compliant one declined not compliant one declined not compliant. Nine of the selections listed to the left was a partial selection. 3 were declined not compliant. | | 2021 | Strategic Astrophysics Technology | 140
80
40 | 44
34
14 | 31%
43%
35% | Astrophysics
Astrophysics
Astrophysics | | one declined not compliant. One of the selections listed to the left was a partial selection. | | 2021 | Nancv Grace Roman Technoloov Fellowshios for Early Career Researchers NuSTAR General Observer Cycle 8 TESS General Impestigator Cycle 5 | 1
165
101
107 | 1
81
49
71 | 49% | Astrophysics
Astrophysics
Astrophysics | | | | 2021 | NICER General Observer Cvcle 4 K-Ray Imaging and Spectroscopy Mission Guest Scientist Program Astrophysics Explorers U.S. Participating Investigators Theoretical and Computational Astrophysics Networks | see notes
see notes | see notes
see notes
see notes | see notes | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | Not Solicited This Year, moved to 2022. Not Solicited This Year Not Solicited This Year Not Solicited This Year | | 2021 | Astroohysics Pioneers Physical Sciences Informatics | 15
29 | 1 5 | 7% | Astrophysics | | 3 declined not compliant: one declined not compliant | | 2021
2021
2021 | Extended Longevity of 3D Tissues and Microphysiological Systems
Seace Biology: Animal Studies Step-1
Seace Biology: Animal Studies Step-2 | 36
56
47 | 9
56
12 | 25% | Biological and Ph | ysical Sc | This was not in ROSES, this was a separate solicitation: NNH21ZDA015N. ience Of the 12 selected, one was a partial selection. Three were declined as not compliant. Two remain | | | Space Biology: Plant Studies Step-1
Space Biology: Plant Studies Step-2
Lunar Explorer Instrument for Space Biology Applications | 45
35
10 | 45
7
3 | | | | idence Taxo were declined as not compliant. One remains selectable February 2023 jenne | | 2021
2021 | Topical Workshops, Symposis, and Conferences
Excelanets Research Program
Future Investigators in NASA Earth and Soace Science and Technology Astro | 31
183
222 | 27
22
29 | 87%
12% | Cross Division
Cross Division
Cross Division | | 13 declined non-compliant one declined non-compliant | | 2021
2021
2021 | Future Investigators in NASA Earth and Space Science and Technology BPS
Future Investigators in NASA Earth and Space Science and Technology Earth
Future Investigators in NASA Earth and Space Science and Technology Helio | 38
394
60 | 2
62
13 | 13%
5%
16%
22% | Cross Division
Cross Division
Cross Division | | Selected with No NASA Funding and one declined non compliant one declined non compliant | | 2021
2021
2021 | Future Investigators in NASA Earth and Soace Science and Technology Planetary
Future Investigators in NASA Earth and Soace Science and Technology Science E
Science Activation Program Integration | 224
2
30 | 32
1
8 | 14%
50%
27% | Cross Division
Cross Division
Cross Division | | Site Sections That Commitment is at declined non-commitment in the declined non-commitment Processis were submitted 2711/2022 and 6 more were partially Supported. | | 2021 | Supplemental Open Source Software Awards
Citizen Science Seed Funding Program
Payloads and Research Investigations on the Surface of the Moon | 0
29
31 | 0
11
2 | N/A | Cross Division
Cross Division
Cross Division | Ē | two declined non compliant | | 2021 | Land Cover/ Land Use Chanoe
Terrestrial Ecology | 19
46 | 8
20 | 42%
43% | Earth Science
Earth Science | E | | | 2021 | Biodiversity Desan Salinity Science Team Crosoberic Science Arctic Radiation-Cloud-Aerosol-Surface Interaction Experiment | 16
29
34
33 | 10
12
11
18 | 41%
32% | Earth Science Earth Science Earth Science Earth Science | | olus one partial selection
one declined as not compliant | | 2021
2021
2021 | Remote Sensing of Water Quality Earth Surface and Interior Precipitation Measurement Missions Science Team | 38
49
114 | 10
18
36 | 26%
37%
32% | Earth Science
Earth Science
Earth Science | | | | 2021
2021
2021 | DSCOVR Science Team
CloudSat and CALIPSO Science Team Recompete
Rapid Response and Novel Research in Earth
Science | 26
65
7 | 13
22
5 | 50%
34% | Earth Science
Earth Science | Ē | one is still no decision remains 09/22. Did not close until 03/29/2022 | | 2021
2021 | Earth Science Applications: Water Resources SERVIR Applied Sciences Team Earth Science Applications: Health and Air Quality | 67
49
68 | 30
20
8 | 45%
41%
12% | Earth Science Earth Science Earth Science | | | | 2021
2021
2021 | instrument Incubator Program Decadal Survey Incubation Advanced Information Systems Technology Land-CoverLand-Use Change, SARI Synthesis Earth Science Applications: Scoococonomic Assessments | 56
76
66 | 17
36
32
8 | 30%
47%
48%
42% | Earth Science Earth Science Earth Science | | One declined not compliant. | | 2021
2021 | Land-Cover/Land-Use Chance: SARI Synthesis
Earth Science Applications: Socioeconomic Assessments | 10 | 2 | 42%
20% | Earth Science
Earth Science | | five declined as not compliant one of the two selected was a partial selection. | | 2021
2021
2021 | Earth Science Applications: Equity and Environmental Justice
Subseasonal-to-Seasonal Hydrometeorological Prediction
Increasing Participation of Minority Sening Institutions in Earth Science Division St | 72
57
22 | 39
13
10 | 23% | Earth Science
Earth Science
Earth Science | | one declined as not compliant. Also 5 cartial selections not listed in the 10 to the left | |------------------------------|--|--------------------------------------|------------------------------------|---------------------------------------|---|--|---| | 2021 | Heliothysics Supporting Research Heliothysics Guest Investigator Open Lung With a Star Science Strategic Capabilities Eving With a Star Science Strategic Capabilities Space Westher Science Apolication Research to Operations to Research | 111
75
66
13 | 24
24
20
4 | 32%
30%
31% | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | olus one partial selection | | 2021
2021
2021 | Soace Weather Science Acolication Research-to-Operations to-Research Heliophysics Technologo and Instrument Development for Science Heliophysics Low Cost Access to Space Heliophysics Light Opportunities Studies Heliophysics Pats Environment Enhancements | 14
14
12
5
4 | 5
4
2
3 | 36%
33%
40% | Heliophysics
Heliophysics
Heliophysics
Heliophysics
Heliophysics | | | | 2021
2021
2021 | Geoscace Dynamics Consellation Interdisciplinary Scientists Heliophysics Mission Concept Studies Interdisciplinary Science for Eclipse Interdisciplinary Science for Eclipse Heliophysics Living With a Star Tools and Methods Step-1 Heliophysics Living With a Star Tools and Methods Step-2 | 10
14
13
47 | 3
6
7
47 | 30%
43%
54% | Heliophysics
Heliophysics
Heliophysics | | | | 2021 | Heliophysics Living With a Star Tools and Methods Step-2 Heliophysics Innovations for Technology and Science Heliophysics Living with a Star Infrastructure Analog Activities to Support Artemis Lunar Operations (D-RATS) | 39
9
1 | 12
6
1 | 67%
100% | Heliophysics
Heliophysics
Heliophysics
Planetary | | | | 2021
2021
2021
2021 | Cassini Data Analysis Step-1 Cassini Data Analysis Step-2 Development and Advancement of Lunar Instrumentation Program Step-1 Development and Advancement of Lunar Instrumentation Program Step-2 | 51
38
56
44 | 49
15
56
5 | N/A | Planetary
Planetary
Planetary
Planetary | | | | 2021 | Discovery Data Analysis Emeraina Worlds Envision VenSAR Science Team Excitationy Hot Operation Temperature Technology | 31
36
42
64 | 9
11
14
17 | 29%
31%
33%
27%
18% | Planetary
Planetary
Planetary
Planetary | | 4 declined not compliant 3 declined not compliant One declined not compliant. Two selections were without NASA funding 3 declined compliant. Two selections were without NASA funding 3 declined compliant | | 2021
2021
2021
2021 | Juno Participating Scientist Program _aboratory Analysis of Returned Samples _unar Data Analysis Step-1 | 27
8
46
35 | 9
3
43
7 | 33%
38%
N/A
20% | Planetary
Planetary
Planetary
Planetary
Planetary | | Plus one non-US proposal selected but no NASA funding | | 2021
2021
2021 | Mars Data Analysis Step-1 Mars Data Analysis Step-1 Mars Data Analysis Step-2 Mars Data Analysis Step-2 Mars Science Laboratory Participating Scientist Program New Fronters Data Analysis Step-1 New Fronters Data Analysis Step-1 | 96
66
50
31 | 79
20
25
30 | N/A
30%
50%
N/A | Planetary
Planetary
Planetary
Planetary | | one declined not compliant | | 2021
2021
2021
2021 | OSIRIS-REx Samole Analysis Participating Scientist Program Planetary Data Archiving, Restoration, and Tools Planetary Instrument Concepts for the Advancement of Solar System Observations Planetary Protection Research | 48
53
22
10 | 9
11
6
5 | 21%
27% | Planetary
Planetary
Planetary
Planetary
Planetary | | Three decilined not compilant. Selections include two partial selections, one is a certifial selection. Three declines rat compilant. | | 2021
2021
2021
2021 | Planetary Science and Technology Through Analog Research Solar System Observations Solar System Workings VIPER Mission Co-Investigator Program | 49
19
81
50
23 | 14
8
28
8 | 29%
42%
35%
16% | Planetary
Planetary
Planetary
Planetary | | 14 selections include one cartial selection
2 of the 8 are partial
selections
includes two that are no NASA funding | | 2020 | Yearly Occortunities for Research in Planetary Defense Astrochysics Data Analysis Astrochysics Research and Analysis | 311
169 | 47
44 | 15% | Planetary Astrophysics Astrophysics | 155 | Actually, 313 were submitted but only 311 were reviewed as 1 proposal was declared non compliant, and 1 | | 2020
2020
2020 | Astrophysics Theory Program Neil Gehrels Smith Observatory Quest Investigator Cycle 17 Felmi Guest investigator Cycle 14 Strategic, Astrophysics Technology Astrophysics Technology Astrophysics Technology Astrophysics Technology Fellowships for Early Career Researchers Vancy Crace Roman Technology Fellowships for Early Career Researchers | see notes
127
87
see notes | see notes
44
36
see notes | see notes
35%
41%
see notes | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | Not Solicited This Year These are just the Phase-1 results, the Phase-2s were due 06/25/2021 Not Solicited This Year | | 2020
2020
2020 | NUSTAR General Observer Cycle / TESS Guest Investigation Cycle 4 NICER Guest Observer Cycle 3 Astrophysics Evalurars ILS, Participation Investigation | 16
196
146
112
0
22 | 84
62
81
0 | 42% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | These are just the Phase-1 results, the Phase-2s were due 06/18/2021. Of the 84 orocosals were selected. | | 2020
2020
2020
2020 | Theoretical and Computational Astrophysics Networks LISA Preparatory Science Astrophysics Pioneers Extreme Precision Radial Velocity Foundation Science Step-1 Proposals | 16
24
31 | 4
6
4
28 | 38%
17%
N/A | Astrophysics
Astrophysics
Astrophysics | | 1 declined as non-complianthot responsive | | 2020 | Externe Pricision Radial Velocity Foundation Science Step 2 Processls Space Bioloxy Step-1 Space Bioloxy Step-2 Physical Sciences Informatics Fluid Physica Experiments on ISS | 25
104
83
34 | 104
15 | N/A | Astrophysics Biological and Physiological | rsical Sc
rsical Sc | ence One declined non comblant. This was not in ROSES in 2020, this was a separate solicitation: NNH202DA014N. This was not in ROSES in 2020, this was a separate solicitation: NNH202DA012PA. FLUIDS. | | 2020
2020 | Land Cover/ Land Use Change
Deean Biology and Biogeochemistry | 34
15
66
76 | 13
17 | 15%
13%
20%
22% | Earth Science
Earth Science | | plus three partial selections and one declined non-compliant/not responsive | | 2020
2020
2020 | Carbon Ovele Science Carbon Monitorino Svstem Blodwestry Global Ecosystem Dynamics Investigation (GEDI) Science Team | 103
55
114
40 | 24
17
13
18 | 45% | Earth Science Earth Science Earth Science Earth Science Earth Science | | Includes two partial selections. | | 2020
2020
2020 | Physical Oceanography Ocean Salirity Field Campaign Ocean Surface Topography Science Team Modeling Analysis and Prediction Prospheric Science Orospheric Science | 2
38
175
80 | 1
17
34
18 | 45%
19%
23% | Earth Science Earth Science Earth Science Earth Science Earth Science | | | | 2020
2020
2020
2020 | Atmospheric Composition: Upoer Atmospheric Composition Observations Atmospheric Composition: Laboratory Research Atmospheric Composition Campaign Data Analysis and Modeling Terrestrial Hydrology | 21
11
91
48 | 15
3
31
11 | 71%
27%
34% | Earth Science Earth Science Earth Science Earth Science Earth Science | | clus two partial selections one declined not compliant/not responsive. | | | Earth and Surface Interior CYONISS Competed Science Team Rapid Response and Novel Research in Earth Science Earth Science U.S. Particication Investigator New (Earth Career) Investigator Program in Earth Science The Science of Terria, Agua, and Supuni-NPP The Science of Terria, Agua, and Supuni-NPP | 46
48
30
238
227 | 14
21
6
45 | 30% | Earth Science Earth Science Earth Science Earth Science Earth Science | | olie declinica noi complianamina responsive. Dius two partial selections and one declined not compliantinot responsive. I declined not compliantinot responsive. Two partial selections | | 2020
2020
2020 | Studies with ICESat-2
Health and Air Quality Applied Sciences Team
Ecological Forecasting | 227
24
58
28
67 | 51
10
14
13 | 42%
24% | Earth Science Earth Science Earth Science | | includes 7 partial selections | | 2020 | Citizen Science for Earth Systems Program Commercial SmallSat Data Analysis Mythanced Component Technology in-space Validation of Earth Science Technologies Solar Iradiance Science Team | 135
71
13
9 | 25
12
3
8 | 12%
19%
17%
23%
89% | Earth Science Earth Science Earth Science Earth Science Earth Science | | | | 2020 | Solar Irradiance Science Team SAGE III VISS Science Team Science Team for the OCO Missions Science Team for the OCO Missions Sucomi NPP and JPSS Standard Products for Earth System Data Records | 19
32
32 | 11
19
25 | 58%
59%
78% | Earth Science
Earth Science | | olus one partial selection | | 2020
2020
2020 | Heliophysics Supponting Research Step-1 Heliophysics Supponting Research Step-2 Heliophysics Guest Investigators Open Step-1 Heliophysics Guest Investigators Open Step-1 Heliophysics Guest Investigators Open Step-2 Living With a Star Science Step-1 | 134
118
139
119
68
61 | 132
41
139
29
68 | 35%
N/A
24% | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | 2 declined non compliant/not responsive Dius one partial selection. 3 declined non compliant/not responsive | | 2020
2020
2020 | Living With a Star Science Stept—1 Space Westher Science Stept—2 Space Westher Science Applications Operations 2 Research Step-1 Space Westher Science Applications Operations 2 Research Step-1 Space Westher Science Applications Operations 2 Research Step-2 Heliophysics Technology and Instrument Development for Science | 61
38
33
31 | 26
37
9
15 | 43%
N/A
27%
48% | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | olus one partial selection. 2 declined non comeliant | | 2020
2020
2020
2020 | Helicohvsics Low Cost Access to Soace Helicohvsics Flight Coordunalies Studies Helicohvsics Flight Opportunities for Research and Technology Helicohvsics Data Environment Enhancements Stee-1 Helicohvsics Data Environment Enhancements Stee-2 | 12
16
20
17 | 5
2
20
9 | 42%
13%
N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics
Heliophysics | | | | 2020 | Heliophysics LLS Participating Newstigator Step-1 Heliophysics LLS Participating Newstigator Step-1 Heliophysics LLS Participating Newstigator Step-2 Early Career Investigator Program Step-2 Early Career Investigator Program Step-2 SQLD-ICON Guest Investigators Step-1 SQLD-ICON Guest Investigators Step-1 SQLD-ICON Guest Investigators Step-2 | 14
12
68
54 | 14
3
67
14 | N/A
26% | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | one was declined as non-compliantinot responsive | | 2020
2020
2020 | Parker Solar Probe Guest Investigators Step-1 Parker Solar Probe Guest Investigators Step-2 HERMES Interdisciplinary Science Teams Step-1 | 32
46
37
12 | 36
14
46
14
11 | 44%
N/A
38%
N/A | Heliophysics Heliophysics Heliophysics Heliophysics Heliophysics | | Selection rate overall is 11/46 = 30%. Plus one selected partial. 3 declined non compliant. | | 2020
2020
2020 | HERMES Interdisciplinary Science Teams Step-2 Emerging Worlds Step-1 Emerging Worlds Step-2 | 12
11
145
125
253 | 6
142
22
47 | 55%
N/A
18% | Heliophysics
Planetary
Planetary | N/A
195 | 22 includes one partial selection. One declined non compliant/not responsive | | 2020
2020
2020
2020 | Solar System Workings Exphibiology Solar System Observations Step-1 Solar System Observations Step-2 Designations and Advancement of Lungs Instrumentation Program Step-1 | 253
156
59
47
47 | 25
58
13
47 | 19%
16%
N/A
28%
N/A | Planetary
Planetary
Planetary
Planetary
Planetary | N/A
147
N/A | Two declined, not complarathot responsive. Two declined, not complarathot responsive. Of those 25 selected 9 were partial selections. | | 2020
2020
2020 | Development and Advancement of Lunar Instrumentation Program Step-2
Laboratory Analysis of Returned Samples Step-1
Laboratory Analysis of Returned Samples Step-5
Laboratory Analysis of Returned Samples Step-5
Planetary Data Archiving, Restoration, and Tools Step-2
Planetary Data Archiving, Restoration, and Tools Step-2 | 43
36
30
172 | 5
36
7
170 | 12%
N/A | Planetary
Planetary
Planetary
Planetary
Planetary | 1895
N/A
329 | \$ value is total awarded amount, all sent in year 1. Award sizes varied by - factor of 10 | | 2020
2020
2020
2020 | Lassini Data Analysis Step-1 Cassini Data Analysis Step-2 New Frontiers Data Analysis Step-1 New Frontiers Data Analysis Step-2 | 131
65
57
61
44 | 65
17
61
16 | 30%
N/A
38% | Planetary
Planetary
Planetary
Planetary | N/A
139
N/A
179
N/A
163 | Includes one partial selection. Includes one partial selection. One declined as non-complianting responsive | | 2020
2020
2020
2020 | Discovery Data Analysis Step-1 Discovery Data Analysis Step-2 Mars Data Analysis Step-1 Mars Data Analysis Step-1 | 57
48
134
96 | 57
12
103
31 | N/A
25%
N/A
32% | Planetary
Planetary
Planetary
Planetary | N/A
164
N/A
144 | THE RESIDENCE OF THE PROPERTY | | 2020
2020
2020 | Planetary Instrument Concects for the Advancement of Solar System Observations
Planetary Instrument Concepts for the Advancement
of Solar System Observations
Planetary Protection Research
Jurnar Data Analysis Steo-1
Lumar Data Analysis Steo-2 | 125
94
see notes
66
45 | 118
10
see notes
61
7 | N/A
11%
see notes
N/A
16% | Planetary
Planetary
Planetary
Planetary
Planetary | | including a partial selection. Not Solicited This Year | | 2020
2020
2020 | Topical Workshops. Symposia. and Conferences
Excolanets Research Program
Habitable Worlds Step-1 | 38
153
147 | 21
30
71 | 55%
20%
N/A | Cross Division
Cross Division
Cross Division | N/A | Includes one partial selection. 7 declined not compliant. | | 2020 | Habitable Worlds Step-2.
Future Investigators in NASA Earth and Soace Science and Technology Astro
Future Investigators in NASA Earth and Soace Science and Technology Earth
Future Investigators in NASA Earth and Space Science and Technology Planelay
Future Investigators in NASA Earth and Space Science and Technology Planelay | 71
196
344
36
247 | 8
21
58
16
33 | 11%
11%
17%
44%
13% | Cross Division Cross Division Cross Division Cross Division Cross Division | 45
45
45
45 | 3 declined non compliant. 199 received. 2 returned without review. 3 moved to PSD. 2 received from PSD. 196 total reviewed. 21 335 received. 2 withdrawn. 5 non compliant. 58 selected 36 received. 16 selected. 2 instrument/technology 7 DAP, 1 space weather science application, 6 theory | | 2020
2020 | Science Activation Program Integration Support for Open Source Tools, Frameworks, and Libraries Supplemental Open Source Software Awards Citizen Science Seed Funding Program | 32
61
6
35 | 9
8
6
9 | 28%
13%
100%
26% | Cross Division
Cross Division
Cross Division
Cross Division | 675 | Includes two carrial selections. 6 declined not compliant. | | 2020
2020
2020 | Pavloads and Research Investigations on the Surface of the Moon Step-1 Payloads and Research Investigations on the Surface of the Moon Step-2 COVID-related Augmentations and Funded Extensions | 52
29
171 | 38
3
95 | N/A
10%
56% | Cross Division
Cross Division
Cross Division | N/A | 2 declined not compliant. | | 2019
2019
2019 | Astrophysics Research and Analysis Astrophysics Theory Program Swift Guest Investigator - Cycle 16 Fermi Guest Investigator - Cycle 13 | 236
120
110 | see notes
52
44
40 | 22%
37%
36% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | Net Sniråted This Year | | 2019
2019
2019 | Strategic Astrophysics Technology Nancy Carce Roman Technology Fellowships NuSTAR General Observer - Cycle 6 EEE Country Coun | 2
173
155
91 | 2
42
46
52 | see notes
100% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | Not Solicited This Year | | 2019
2019
2019 | NICER Guest Observer - Cycle 2 Astrophysics Science SmallSat Studies System-Level Seamented Telescope Design - Technology Maturation | 32 | 8
2 | 57%
25%
67% | Astrophysics
Astrophysics
Astrophysics | | | | 2019 Land Cover Land Use Change Step-1 2019 Land Cover Land Use Change Step-2 | 30
25 | 29 | N/A
36% | Earth Science
Earth Science | | Step-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Step-2 | |--|---------------------------|----------------------------|--------------------------------------|---|---------------------------------|--| | 2019 Lland Cover Land Use Change Step-1 2019 Lland Cover Land Use Change Step-2 2019 Lland Cover Land Use Change Step-2 2019 Physical Deparagonably 2019 Deeas Stainty Science Team 2019 Sea Level Change Science Team 2019 Sea Level Change Science Team 2019 Modeling Analysis and Prediction | 40
30
15
68 | 8
11
7 | 20%
37%
47%
25% | Earth Science Earth Science Earth Science Earth Science Earth Science | | 6 full selections 2 partial selections One declined as non combliant. Two partial selections included in the 11/30 6 out of the 7 selected were not fully funded. The 17 selected includes 2 partial selections. | | 2019 Aura Science Team | 19
66
53
103 | 10
17
11
29 | 53%
26%
21%
28% | Earth Science Earth Science Earth Science Earth Science | | 17 includes one partial selection. | | 2019 Terestrial Hydrology 2019 The Solf Misstare Activer-Passive Mission Science Team 2019 Weather and Atmospheric Dynamics 2019 Earth Surface and Interior 2019 GRACE-FO Science Team 2019 Racid Response and Novel Research in Earth Science | 85
60
38 | 20
14
21
4 | 24%
23%
55%
67% | Earth Science
Earth Science
Earth Science
Earth Science | | | | 2019 Aidou response and rober tessearch in Expense. 2019 Aidour response and rober tessearch in Expense. 2019 Aidour response and rober tessearch in Expense. 2019 Expense instrument Technology Transition 2019 Earth Science Research in Earth Science 2019 Expense. 2019 ICESst-2 Research 2019 ICESst-2 Research | 14
118
152
96 | 4
35
27 | 29%
30%
18% | Earth Science
Earth Science | | | | 2019 Global Navigation Satellite System Research
2019 PACE Science and Applications Team
2019 Understanding Changes in High Mountain Asia | 24
52
38 | 11
23
4 | 25%
46%
44%
11% | Earth Science Earth Science Earth Science Earth Science | | Includes 6 partial selections. | | 2019 Advancing Collaborative Connections for Earth System Science 2019 Instrument Incubator Program 2010 Systematics I and Imaging, Technology | 72
70
12
45 | 11
19
6
11 | 15%
27%
50% | Earth Science Earth Science Earth Science Earth Science | | 2 were declined as non compliant | | 2019 Dilization of Airborne L- and S- Band Swithetic Aperture Radar Imagery over
2019 Dilization of Airborne L- and S- Band Swithetic Aperture Radar Imagery over
2019 Decadal Survey Incubation Study Teams: Planetary Boundary Layer and Surface
2019 Helicothysics Supponting Research Step 1 | T 62
140
122 | 25
140 | 40%
N/A | Earth Science | | Steo-1 all "invited" | | 2019 Heliophysics Suppontina Research Step-2 2019 Heliophysics Theory, Modeling, and Simulations Step-1 2019 Heliophysics Theory, Modeling, and Simulations Step-2 2019 Heliophysics Guest Investigations Open Step-1 2019 Heliophysics Guest Investigations Open Step-2 2019 Heliophysics Guest Investigations Open Step-2 | 64
54
146 | 64
14
146 | 26%
N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | one Ster-2 procosal was declined as non comoliant. Step-1 all "invited" Step-1 all "invited" | | 2019 Heliophysics Guest Investigators Open Step-2 2019 Heliophysics Living With a Star Science Step-1 2019 Heliophysics Living With a Star Science Step-2 2019 Space Weather Science Applications Operations 2 Research Step-1 | 128
73
65
56 | 30
73
26
56 | 23%
N/A
40%
N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | 6 declined as non compliant Steen-1 all "insteed" Steen-1 all "insteed" | | 2019 Space Weather Science Applications Operations 2 Research Step-2 2019 Heliophysics Technology and Instrument Development for Science | 48
31
42 | 13
12
15 | 27%
39%
36% | Heliophysics
Heliophysics | | one declined non compliant. | | 2019 Heliophysics Flight Opportunities for Research and Technology 1019 Livino Wilh a Stat Stratepic Capabilities 2019 Heliophysics Data Environment Emphasis Step-1 2019 Heliophysics Data Environment Emphasis Step-2 2019 Heliophysics U.S. Participating Investigator |
18
15
see notes | 18
11
see notes | see notes | Heliophysics
Heliophysics
Heliophysics
Heliophysics | | Not solicited in ROSES-2019
Steo-1 all "Invited"
Not solicited in ROSES-2019 | | 2019 Outer Heliosohere Guest Investigators Step-1 2019 Outer Heliosohere Guest Investigators Step-2 2019 Heliophysics System Observatory Data Support 2019 Heliophysics System Observatory - Connect Step-1 | 19
16
6 | 18
5
4
17 | N/A
31%
67%
N/A | Heliophysics
Heliophysics
Heliophysics | | One Steo-1 was declined as non compliant One Steo-2 was declined as non compliant Step-1 all "invited" | | 2019 Heliophysics System Observatory - Connect Step-2 2019 Emerging Worlds Step-1 | 14 | 130 | 29%
N/A | Heliophysics
Planetary | N/A | | | 2019 Emeraina Worlds Steo-2 2019 Exobioloov 2019 Solar System Observations Step-1 2019 Solar System Observations Steo-2 | 100
159
66
49 | 23
18
65
9 | 23%
11%
N/A
18% | Planetary
Planetary
Planetary
Planetary | 244
259
N/A
151 | 4 declined non compliant. Of those 23 selected 5 were partial selections. 7 declined non compliant. | | 2019 Solar Sivatem Observations Step-2 2019 Develorment and Advancement of Lunar Instrumentation Program Step-1 2019 Development and Advancement of Lunar Instrumentation Program Step-2 2019 Laboratory Analysis of Returned Samples Step-1 2019 Laboratory Analysis of Returned Samples Step-2 | 44
31 | 49
5
25 | 11%
N/A | Planetary
Planetary
Planetary | N/A | one declined non compliant Plus one partial selection. Two declined non compliant. Award sizes range from = 100K-1M | | 2019 Planetary Data Archivino. Restoration, and Tools Step-1 2019 Planetary Data Archiving, Restoration, and Tools Step-2 2019 Cassini Data Analysis Step-1 | 23
144
112
85 | 139
18
85 | 26%
N/A
16%
N/A | Planetary
Planetary
Planetary
Planetary | N/A
150
N/A | Plus one battal selection. Two declined non-combinant, Award sizes range from ~ 10uk-1M | | 2019 Cassini Data Analysis Steo-2 2019 New Frontiers Data Analysis Step-2 2019 Lunar Data Analysis Step-1 2019 Lunar Data Analysis Step-1 2019 Lunar Data Analysis Step-1 | 61
27
62
31 | 18
11
59
8 | 30%
41%
N/A
26% | Planetary
Planetary
Planetary
Planetary | 187
159
N/A
127 | | | 2019 Planetary Science and Technology Through Analog Research Step-1 2019 Planetary Science and Technology Through Analog Research Step-2 2019 Discourant Park Analogie Step-1 | 81
49
57 | 69
6
56 | N/A
12%
N/A | Planetary
Planetary
Planetary | N/A
761
N/A | | | 2019 Discovery Data Analysis Step-2 2019 Mars Data Analysis Step-2 2019 Mars Data Analysis Step-1 2019 Mars Data Analysis Step-2 2019 Mars Data Analysis Step-2 2019 Planetary Instrument Concents for the Advancement of Solar System Observation | 163 | 129
21
116 | 19%
N/A
20% | Planetary
Planetary
Planetary | 158
N/A
160
N/A | | | 2019 Planetary Instrument Concepts for the Advancement of Solar System Observation 2019 Planetary Instrument Concepts for the Advancement of Solar System Observation 2019 Planetary Protection Research 2019 Planetary Protection Research 2019 Planetary Major Equipment and Facilities: Stand-alone proposals | see notes
see notes | see notes
see notes | N/A
12%
see notes
see notes | Planetary
Planetary
Planetary | 299
N/A
N/A | One of the selections was a feasibility study. Average annual award size of the other 11 = 321 Not solicited in ROSES-2019 Not solicited in ROSES-2019 | | 2019 Planetary Science Early Career Award Program 2019 Interdisciplinary Consortia for Astrobiology Research Steo-1 2019 Interdisciplinary Consortia for Astrobiology Research Step-2 2019 Europa Citoper Gravity/Radio Science Team | 46
30
44 | 34
6
8 | 17%
N/A
20%
18% | Planetary
Planetary
Planetary
Planetary | 823 | Steo-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Steo-2
In addition to the 6 listed, there were also two "partially" selected
1/11 for Team leadt 7/33 for Co-1 | | 2019 Eurosa Clicoer Grarkiv/Radio Science Team 2019 Akatsusid Particiosatio Scientist Procram Mandatory NOI 2019 Akatsusid Particiosation Scientist Procram Proposatis 2019 Mars 2020 Participating Scientist Program Proposatis 2019 Mars 2020 Participating Scientist Program Procosalis | 18
11
195
120 | 8
N/A
4
N/A
13 | N/A
36%
N/A
11% | Planetary
Planetary
Planetary
Planetary | N/A
191
N/A
83 | 13 selected includes 3 from foreign organizations | | 2019 Solar System Workings 2019 Topical Workshops, Symposia, and Conferences | 371
47 | 42
32
see notes | 11% | Planetary
Cross Division | 176 | Proposers are instructed to contact funding program manager; most proposals are not submitted without | | 2019 Excolanets. Research Program 2019 Habitable Worlds Step-1 2019 Habitable Worlds Step-2 2019 Asolicel Information Systems. Research Step-1 | 111
65
21 | 70
7
18 | N/A
11%
N/A | Cross Division
Cross Division
Cross Division
Cross Division | | not solicited in ROSES-19 see Second Expolanets Research Program in 2018 Step-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Step-2 Step-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Step-2 | | 2019 Apolied Information Systems Research Step-2 2019 Future Investigators in NASA Earth and Space Science and Technology 2019 Assessment Step Step Step Step Step Step Step Ste | 17
797
246 | 131 | | Cross Division
Cross Division
Astrophysics | 122 | Stee-2 propostals were due 417/2020
Astro = 20/158, Earth = 63/341, Helio = 14/44, Planetary = 34/254 | | 2019. Astrophysics Data Anthysis 2019. George Anthophysics Data Anthysis 2019. George Anthophysics Data Anthysis 2019. Astrophysics Space Anthophysics 2019. Astrophysics Spaces Program 2019. Astrophysics Decory Program 2019. George Decory Program 2019. Fermi Color United States 2019. Spaces Color Decorate Spaces Spaces 2019. Spaces Color Decorate Spaces Spaces 2019. Spaces Color Decorate Spaces 2019. Spaces Color Decorate Spaces 2019. Spaces Color Decorate Spaces 2019. | 247
164
38 | 38
31
9 | 22%
15%
19%
24% | Astrophysics
Astrophysics
Astrophysics | 144 | 6 Declined as Non-Compliant. This takes the place of the 2019 solicitation, it was added to ROSES-2018 to maintain the normal schedule. Plus 19 partial selections. Including partial selections the rate is 30%. | | 2018 LISA Preparatory Science | 97
see notes
30 | 35
see notes
9 | 36%
see notes | Astrophysics
Astrophysics
Astrophysics | N/A
219 | Not Solicited This Year Number submitted based on Phase-1 via ARK RPS Not Solicited This Year All amandatory Nots received. | | 2018 Nancy Grace Roman Technology Fellowships
2018 NICER Guest Observer - Cycle 1
2018 NuSTAR Guest Observer - Cycle 5 | 1
84
198
6 | 1
49
67
0 | N/A
100%
58%
41%
0% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | Number submitted based on Phase-1 via ARK RPS
Number submitted based on Phase-1 via ARK RPS | | 2018 SOFIA Next Generation Instrumentation 2018 Strategic Astrophysics Technology 2018 Swift Guest Investigator - Cycle 15 2018 Transiting Excolanet Survey Satellite Cycle-2 | 30
141
151 | 12
22
37 | 40%
16%
25% | Astrophysics
Astrophysics
Astrophysics | | Number submitted based on Phase-1 via ARK RPS Number submitted based on Phase-1 via ARK RPS | | 2018 Apollo Next Generation Sample Analysis Program 2018 Astrochmamics in Support of ley Worlds Missions Steo-1 2018 Astrochmamics in Support of ley Worlds Missions Step-2 2018 Cassini Data Analysis Step-1 | 23
38
33 | 9
37
4 | 39%
N/A
12% | Planetary
Planetary
Planetary | 286
N/A
301 | | | 2018 Cassini Data Analysis Step-1 2018 Cassini Data Analysis Step-2 2018 Cassini Data Analysis Step-2 2018 Cassini Data Analysis:PDS Cassini Data Release 54 Step-1 2018 Cassini Data Analysis: PDS Cassini Data Release 54 Step-2 | 79
61
10 | 79
18
9 | N/A
30% | Planetary
Planetary
Planetary
Planetary | N/A | Plus one partial selection | | Cassani Data Analysis: PDS Cassani Data Release 54 Step-2 Development and Advancement of Lunar Instrumentation Program Step-1 Development and Advancement of Lunar Instrumentation Program Step-2 Discovery Data Analysis Step-1 | 7
72
48
33 | 72
10
32 | 29%
N/A
21%
N/A | Planetary
Planetary
Planetary
Planetary | N/A
1070 | | | 2018 Discovery Data Analysis Step-2 2018 Emeratina Worlds Step-1 2018 Emerging Worlds Step-2 2018 Exhibitors | 22
161
110
156 | 5
135
26
24 | 23%
N/A
24%
15% | Planetary
Planetary
Planetary
Planetary | N/A
129
N/A
187
215 | plus one partial selection | | 2018 Instrument Concepts for Europa Exploration 2 Step-1 2018 Instrument Concepts for Europa Exploration 2 Step-2 2018 Korea Pathfinder Lunar Orbiter Participating Scientist Program Step-1 | 49
44
40 | 48
14
40 | N/A
32%
N/A | Planetary
Planetary
Planetary | N/A
1020
N/A | | | 2018 Korea Pathfinder Lunar Orbiter Participating Scientist Program Step-2 2018 Laboratory Analysis of Returned Samples Step-2 2018 Laboratory Analysis of Returned Samples Step-2 2018 Lunar Data Analysis Step-1 | 26
33
26
66 | 9
29
9
63 | 35%
N/A
35%
N/A | Planetary
Planetary
Planetary
Planetary | N/A
299
N/A | Launch date delayed review postboned, Selections made late 2020. | | 2018 Lunar Data Analysis Step-2 2018 Lunar Surface Instrument and Technology Payloads Step-1 2018 Lunar Surface Instrument and Technology Payloads Step-2 | 37
69
51
54 | 9
61
12
10 | 24%
N/A
24%
19% |
Planetary
Planetary
Planetary | 110
N/A
1275 | Of the 10 awards one was to a foreign proposer. | | 2018 Mars 2020 Returned Samole Science Participating Scientist Program 2018 Mars Data Analysis Steo-1 2018 Mars Data Analysis Steo-2 2018 Mars Data Analysis Steo-2 2018 Maturation of Instruments for Solar System Exploration Step-1 | 160
103
75 | 10
129
23
66 | N/A
22%
N/A | Planetary
Planetary
Planetary
Planetary | N/A
136
N/A | Ut the 10 awards one was to a toreign proposer. Plus one partial selection | | 2018 Maturation of Instruments for Solar System Exploration Step-2 2018 New Frontiers Data Analysis Step-1 2018 New Frontiers Data Analysis Step-2 2018 Planetary Data Archiving, Restoration, and Tools Step-1 | 55
44
25
122 | 6
34
9
113 | 11%
N/A
36%
N/A | Planetary
Planetary
Planetary
Planetary | 1000
N/A
129
N/A | | | 2018 Planetary Data Archiving. Restoration. and Tools Steo-2 2018 Planetary Instrument Concepts for the Advancement of Solar System Observation 2018 Planetary Instrument Concepts for the Advancement of Solar System Observation 2018 Planetary Maior Equipment and Facilities Steo-1 | 91
d 124
d 91 | 16
116
11 | 18%
N/A
12%
N/A | Planetary
Planetary
Planetary | 157
N/A
318 | | | 2018 Planetary Major Equipment and Facilities Step-2 2018 Planetary Mission Concept Studies 2018 Planetary Protection Research | 9
54
35 | 14
1
10
10 | 11%
19%
29% | Planetary
Planetary
Planetary
Planetary | N/A
1,053
120
195 | 1-year awards only
one declined non compliant | | 2018 Planetary Science and Technology Through Analog Research Step-1 2018 Planetary Science and Technology Through Analog Research Step-2 2018 Scientific Exploration Subsurface Access Mechanism for Europa Technology Dev 2018 Scientific Exploration Subsurface Access Mechanism for Europa Technology Dev | N/A
N/A
e 10
e 9 | N/A
N/A
10
5 | N/A
N/A
N/A
56% | Planetary
Planetary
Planetary
Planetary | N/A | Not Solicited This Year Not Solicited This Year | | 2018 Solar System Observations Step-1 2018 Solar System Observations Step-2 2018 Solar System Workings | 82
66
338 | 81
14
74 | N/A
21%
22% | Planetary
Planetary
Planetary | N/A
146
149 | 14 selected include three partial selections | | 2018 Rosetta Data Analysis Step-1 2018 Rosetta Data Analysis Step-2 2018 Exoolanets Research Program Step-1 | 26
23
152 | 26
7
151 | N/A
30%
N/A | Planetary
Planetary
Cross Division | N/A
174
N/A | 1 late proposal returned without review | | 2018 Excolanets Research Program Steo-1 2018 Excolanets Research Program Steo-2 2018 Second Expolanets Research Program Step-1 2018 Second Expolanets Research Program Step-1 2018 Second Expolanets Research Program Step-2 2018 Second Expolanets Research Program Step-2 2018 Second Expolanets Research Program Step-2 | 117
184
139 | 16
184
21 | 14%
N/A
15% | Cross Division
Cross Division
Cross Division | 159
N/A | This takes the 2019 solicitation, it was added to ROSES-2018 to maintain the normal schedule of the 21 selected, two were central and of those declined, one was non compliant. | | 2018 Habitable Worlds Step-2 2018 Habitable Worlds Step-2 2018 Topical Workshops, Symposia, and Conferences | 127
60
52 | 72
10
38 | N/A
17%
73% | Cross Division
Cross Division
Cross Division | N/A
185 | 9 full selection and one partial selection and one decline as non compliant Proposers are instructed to contact funding program manager, most proposals are not submitted without | | 2018 Onean Salinity Field Campainn SPIRS-2 Procession and Synthesis 2018 Earth Surface and Interior 2018 Sustaining Living Systems in a Time of Climate Variability and Change 2018 Earth Science Apolications: Disaster Risk Reduction and Response | 55
63
40 | 4
19
17
10 | 100%
35%
27%
25% | Earth Science Earth Science Earth Science Earth Science | 137
169
358 | | | 2018 Precipitation Measurement Missions (PMM) Science Team 2018 Physical Oceanography 2018 Earth Science U.S. Participating Investigator | 130
56
26 | 40
12
8 | 31%
21%
31% | Earth Science
Earth Science
Earth Science | 131
153 | The 8th was funded later by Physical Oceanography program funds | | 2018 Cloudsat and CALIPSO Science Tram Recompete 2018 Earth Science Apolications: Water Resources Step-1 2018 Earth Science Apolications: Water Resources Step-2 2018 Latrospheric Composition: Modeling and Analysis | 101
106
46
114 | 21
49
9
24 | 21%
46%
20%
21% | Earth Science Earth Science Earth Science Earth Science | N/A
312
179 | Plus four more partial selections Plus one bridge funding | | 2018 NASA Energy and Water Cycle Study 2018 Science Team for the NASA ISRO Synthetic Aperture Radar (NISAR) Mission 2018 Land Cover Land Use Change Stee-1 | 13
51
52 | 2
25
23 | 15%
49%
44%
41% | Earth Science Earth Science Earth Science Earth Science | N/A | Overall selection rate vs. Steo-1s is 17% | | 2018 Land Cover Land Use Chance Step-2 2018 Rapid Response and Novel Research in Earth Science 2018 SERVIR Applied Sciences Team Step-1 | 8 | 7 | 88% | Earth Science | _ | | | 2018 T | errestrial Ecology
SCOVR Science Team | 72
29 | 17
13 | | Earth Science
Earth Science | 154 | | |--------------------------------------|--|-------------------------------|------------------------|--------------------------|--|-------------------|---| | 2018 | COSTRESS Science Team Idvanced Information Systems Technology Remote Sensing Theory for Earth Science Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) Mission System Vicarious
| 73
100
134 | 15
22
23 | 21%
22%
17% | Earth Science
Earth Science | | | | 2018 | Carbon Monitorina System: Continuina Prototype Product Development | 54 | 15 | | Earth Science Earth Science Heliophysics | 3100 | | | | teliophysics Data Environment Enhancements Steo-1 teliophysics Data Environment Enhancements Steo-2 teliophysics - Early Career Investigator Program Step-1 teliophysics - Early Career Investigator Program Step-2 | 9
4
101 | 6
4
55 | 54% | Heliophysics | N/A
59
N/A | | | | teliophysics - Early Career Investigator Program Step-2 feliophysics Guest Investigators Steo-1 feliophysics Guest Investigators Steo-2 feliophysics Living With a Star Science Step-1 | 50
160
142 | 159
37 | 18%
N/A
26%
N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | N/A
N/A | 9 full selection and three partial selections | | | | 120
104
44 | 120
29
43 | 28%
N/A | Heliophysics
Heliophysics | N/A | two declined as non compliant. | | 2018 F
2018 F
2018 S | teliophysics Phase I DRNE Science Centers Step-1 teliophysics Phase I DRNE Science Centers Step-2 teliophysics Space Weather Operations-to-Research second Heliophysics Scace Weather Operations-to-Research Step-1 | 19
12 | 9
9
12 | N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | N/A | | | 2018 F
2018 F | Second Heliophysics Space Weather Operations-to-Research Step-1 second Heliophysics Space Weather Operations-to-Research Step-2 feliophysics Supporting Research Step-1 feliophysics Supporting Research Step-2 | 190
169 | 189
33 | N/A
20% | Heliophysics
Heliophysics | N/A
N/A | Step-1 break out by discipline: HSPHR: 42, ITM: 19, MAG: 71, Sun: 58
Step-2 break out by discipline: HSPHR: 8/37, ITM: 4/18 , MAG: 12/59 , Sun: 9/54 | | | teliophysics Technology and Instrument Development for Science Step-1 feliophysics Technology and Instrument Development for Science Step-2 | 74
264 | 92
4
43 | 5% | Heliophysics
Heliophysics | N/A | | | 2017 / | estrophysics Data Analysis estrophysics Research and Analysis estrophysics Theory Program | 169
219 | 36
51 | 21%
23% | Astrophysics
Astrophysics | | 52 total selections, of which 14 were partial selections. Four proposals were declined as non compliant. | | 2017 P | Saudyingsts: https://linearingsts.com/sices | 138
69
42 | 65
23 | 55% | Astrophysics
Astrophysics | | Productions were desirated as front critical | | | lancy Grace Roman Technology Fellowships
IuSTAR Guest Observer - Cycle 4
Strategic Astrophysics Technology
Swift Guest Investigator - Cycle 14 | 196
25
146 | 83
11 | 0%
42%
44%
21% | Astrophysics
Astrophysics
Astrophysics | | | | 2017 T
2017 T
2017 T | heoretical and Computational Astrophysics Networks ransiting Expolanet Survey Satellite Cycle-1 | 32
143
146 | 3
38
145 | 9%
27% | Astrophysics
Astrophysics
Astrophysics | | were from non-US organizations and thus not funded and 1 belongs to a category of unfunded proposals One proposal declined non constiant. Of those selected 4 were propriate from non-US Organizations and thus not eligible for funding. | | | xxolanets Research Program Step-1 xxolanets Research Program Step-2 stabitable Worlds Step-1 delibels Wedge Step-2 | 111
101 | 19
59 | N/A
17%
N/A
17% | Cross Division Cross Division Cross Division Cross Division | 148
N/A | | | | fabitable Worlds Step-2 Opical Workshops, Symposia, and Conferences divanced Component Technology | 54
88
39 | 32
12 | 59%
14%
13% | Cross Division
Earth Science | 100 | 52 NOIs were submitted. | | 2017 /
2017 /
2017 (| Advancing Collaborative Connections for Earth System Science Hmosoheric Composition: Laboratory Research Computational Modeling Algorithms and Cyberinfrastructure Cryospheric Science | 20
13
67 | 8
5 | 40%
38%
19% | Earth Science
Earth Science
Earth Science
Earth Science | | 10 NOIs submitted | | 2017 C | Prospheric Science PYGNSS Competed Science Team Earth Science Applications: Health and Air Quality Earth Surface and Interior | 44
62 | 14
11
13 | 32% | Earth Science Earth Science Earth Science | | | | 2017 E | anth Venture Suborbital-3
ire Impacts on Regional to Global Scales: Emissions, Chemistry, Transport, and
n-space Validation of Earth Science Technologies | 30
38
26 | 5
17 | 17% | Earth Science Earth Science Earth Science | | One of the 5 was a partial selection Only 9 were fully funded. One proposal was from a foreign granization 7 were partially funded. | | 2017 L
2017 M | and Coveril and Use Change Making Earth Systems Data Records for Use in Research Environments May (Earth Carear) Insertinator Program in Earth Science | 33
96
141 | 8
24
33 | 24%
25%
23% | Earth Science Earth Science Earth Science | | One declined non compliant. One declined non compliant. | | 2017 C | Ocean Salinity Science Team Ocean Vector Winds Science Team | 28
48
27 | 7
15
12 | 25%
31%
44% | Earth Science
Earth Science
Earth Science | | Ce declined not compliant 29 NOIs submitted 29 NOIs submitted | | 2017 F
2017 S | Rapid Response and Novel Research in Earth Science SAGE IMSS Science Team Science Team for the OCO Missions | 5
34
41 | 2
10
17 | 40%
29%
41% | Earth Science
Earth Science
Earth Science | | 4 declined non compliant Plus four proposals from foreign prospirations not eligible for NASA funding | | 2017 8 | solar Irradiance Science Team | 11
92
230 | 8
20
66 | 73%
22%
29% | Earth Science Earth Science Earth Science | | 10 NOIs were submitted. Proposals came in 10/06/2017. One proposal was declined as non compliant. 17 fully funded, 3 partially funded. | | 2017 F
2017 F
2017 F | errestma ryproxogy he Science of Terra, Aqua, Suomi, NPP, and JPSS letiophysics Guest Investigators Step-1 fetiophysics Guest Investigators Step-2 letiophysics Infrastructure and Data Environment Enhancements Step-1 | 193
175
15 | 191
32
11 | N/A
18%
N/A | Heliophysics
Heliophysics
Heliophysics | N/A | Sun = 12/69; MAG = 10/53 (incl a partial); ITM =4/20 (incl a partial); HSPH = 6/33 | | 2017 F
2017 F
2017 F | telophysics Infrastructure and Data Environment Enhancements Steo-2
teliophysics Living With a Star Science Step-1
teliophysics Living With a Star Science Step-2 | 9
136
117
21 | 9
136
30 | 100%
N/A
26% | Heliophysics
Heliophysics
Heliophysics | 53
N/A | | | 2017 F | leliochvsics Space Weather Operations-to-Research
teliochvsics Supporting Research Steo-1
teliophysics Supporting Research Step-2 | 198
177 | 8
198
37 | 38%
N/A | Heliophysics
Heliophysics
Heliophysics | | 2 oroposals are under consideration for funding by another Agency. The 37 (21%) selected doesnt include the 7 partial selections. Sun 56 submitted, 12 selected, 3 partially | | 2017 F | feliophysics Technology and Instrument Development for Science Step-1
feliophysics Technology and Instrument Development for Science Step-2
dagnetospheric Multiscale Guest Investigators Step-1 | 101
88
54 | 100
33
54 | N/A
38% | Heliophysics
Heliophysics
Heliophysics | | | | 2017 N
2017 C | Asgnetospheric Multiscale Guest Investigators Step-2
assini Data Analysis Step-1
assini Data Analysis Step-2 | 47
92
73 | 16
84
20 | 34%
N/A | Heliophysics
Planetary Science
Planetary Science | N/A
120 | Two declined as non compliant. | | | Niscovery Data Analysis Step-1
Discovery Data Analysis Step-2
merolina Worlds Steo-1 | 54
35
172 | 53
7
158 | N/A | Planetary Science
Planetary Science
Planetary | N/A
165
N/A | | | 2017 E
2017 E
2017 E | meraina Worlds Step-2
xabiology Step-1
xabiology Step-2 | 128
200
150
67 | 30
177
30
19 | 23%
N/A
20% | Planetary
Planetary Science
Planetary Science | | The 30 (23%) selected dont include 5 partial selections The 27 (20%) selected does include the three partially selected. | | | nSiaht Particioatina Scientist Program
aboratory Analysis of Returned Samples Step-1
aboratory Analysis of Returned Samples Steo-2 | 27 | 19
27
6
64 | 28%
N/A | Planetary Science
Planetary Science
Planetary Science
Planetary Science | N/A | Plus four proposals from foreign organizations are selectable and under consideration for funding by a | | | unar Data Analysis Step-1
unar Data Analysis Step-2
fars Data Analysis Step-1 | 22
65
48
154 | 64
11
131 | N/A
23%
N/A | Planetary Science
Planetary Science
Planetary Science | 127
N/A | Pus three partial selections | | | fars Data Analvsis Steo-2
SISRIS REX Participating Scientists Program Steo-1
SIRIS REX Participating Scientists Program Step-2 | 154
103
79
61
108 | 21
77
13
100 | 20%
NA
21% | Planetary Science
Planetary Science
Planetary Science | | Two were from foreign proposers | | 2017 F
2017 F
2017 F | Hanetary Data Archivino. Restoration, and Igols Step-1
Hanetary Data Archivino. Restoration, and Tools Step-2
Planetary Instrument Concepts for the Advancement of Solar System Observations | 108
80
136
106 | 100
16
125 | 20%
NA | Planetary Science
Planetary Science
Planetary Science | 157
N/A | olus one partial selection not included in data to the left
2 non-compliant. 9 discouraged. | | | Planetary Instrument Concepts for the Advancement of Solar System Observations
Stanetary Protection Research
Planetary Science and Technology
Through Analog Research Step-1
Planetary Science and Technology Through Analog Research Step-2
solar System Observations Step-1 | 14
60 | 12
1
49 | 7%
N/A | Planetary Science
Planetary Science
Planetary Science | N/A | 1 was fully selected. four were partially selected, and one was declined as non compliant. The remainder | | 2017 \$ | Solar System Observations Step-2 | 90
71 | 90
19 | 13%
N/A
27% | Planetary
Planetary
Planetary | 820
N/A
370 | wide range of award sizes blus 5 partial selections in NEOO not included in the 19 listed. Ava award size for 10 PAST selections is | | 2017 F | Solar Svstem Workinos
Kosetta Data Analysis Step-1
Kosetta Data Analysis Step-2
Astrophysics Data Analysis | 366
45
31
238 | 74
43
9
52 | 20%
N/A
29% | Planetary
Planetary
Planetary | 146
N/A
135 | one non compliant and one discouraged One declined non compliant. 3 Procoasts not reteieved as non-responsive/non-compliant. Total of awards: 17,900.460 over the period | | | satophysics bata Analysis
strophysics Explorers U.S. Participating Investigators
strophysics Probe Mission Concept Studies
strophysics Research and Analysis | 1
28
140 | 0
10 | 36% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | 3 Proposais not reviewed as non-responsive non-composant, Total of awards: 17, 900, 460 over the period 16 of there were partial awards. | | | sardywystos Research and viruspas
katochwisci Bheory Phoram
xxplanet Research Program Step-2 Astro only, redundant with Xdv XRP row
Fermi Guest Investigator - Cycle 10
12 Guest Observer - Cycle 5 Step-1 | 200
50 | 31
9 | 39%
16%
18%
23% | Astrophysics
Astrophysics
Astrophysics | 162 | 16. Of there were damas awards. | | 2016 F
2016 F | Carlin Suest Investigation Cycle 10 Step-1 (2 Guest Observer - Cycle 5 Step-1 (2 Guest Observer - Cycle 5 Step-2 (2 Guest Observer - Cycle 5 Step-2 (3 Guest Observer - Cycle 5 Step-2 (4 Guest Observer - Cycle 5 Step-2 (5 Guest Observer - Cycle 5 Step-2 (6 Guest Observer - Cycle 5 Step-2 (7 Guest Observer - Cycle 5 Step-2 (8 Guest Observer - Cycle 5 Step-2 (8 Guest Observer - Cycle 5 Step-2 (8 Guest Observer - Cycle 5 Step-2 (9 | 183
104
91
N/A | 42
104
24
N/A | N/A
26% | Astrophysics
Astrophysics | | See also https://keolerscience.arc.nasa.gov/
4 foreign Pl's selected with no funding. | | 2016 P
2016 S
2016 S
2016 S | 22 Guest Observer - Oxele & Stece-2 above Grace Roman Technology Fellowships uSTAR Guest Observer - Oyele 3 trategic Astrophysics Technology with Guest Investigator - Cycle 13 | 216
30
156 | 47
9 | N/A
22%
30%
15% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | NA. | Not solicited this year 47 awards include foreign investigators, 33 proposers from US organizations received funds. | | 2016 E | xxxolanets Research Program Step-1
ixxolanets Research Program Step-2
tabitable Worlds Step-1 | 140
110 | 139
20 | N/A
18%
NA | Cross Division
Cross Division
Cross Division | NA
123
NA | Plus a couple of partial selections | | 2016 | sabitable Worlds Step-2 nterdisciplinary Science For Eclipse 2017 Step-1 nterdisciplinary Science For Eclipse 2017 Step-2 | 61
41
39 | 14
41
11 | 23%
NA | Cross Division
Cross Division
Cross Division | 175
NA
95 | | | 2016 | industrialman Voltage Cerus Editose 2017 Seeb 2 Opical Workshops, Symposia, and Conferences and Cover/Land Use Change Step-1 and Cover/Land Use Change Step-2 | 51
53
25 | 42
27
9 | 82% | Cross Division Earth Science Earth Science | | Proposers are instructed to contact funding program manager; most proposals are not submitted without | | 2016 C | Ocean Biology and Biogeochemistry-1 Ocean Biology and Biogeochemistry-2 | 67
49
34 | 65
13
9 | NA
27%
26% | Earth Science Earth Science Earth Science | | | | 2016 C | errestrial Ecology Jarbon Ovcle Science Jarbon Moritorino System Physical Oceanography | 135
76
34 | 28
16
11 | 21%
21%
32% | Earth Science Earth Science Earth Science | | | | 2016 5 | Ocean Salinity Science Team
Sea Level Change Science Team | 38
20
56 | 17
8
26 | 46% | Earth Science
Earth Science
Earth Science | | | | 2016 7 | Cean Surface Topography Science Team
footeling. Analysis, and Prediction
timoscheric Composition: Upoer Almospheric Composition Observations
Joud and Aerosol Monspornal Processes - Philippines Experiment | 161
35
32 | 39
24
14 | 44% | Earth Science
Earth Science | | | | | Mmoscheric Composition: Aura Science Team and Atmoscheric Composition More
errestrial Hydrology
Veather and Atmoscheric Dynamics
arth Surface and Interior | 100
29
68 | 39
14
28 | 39%
48%
41% | Earth Science
Earth Science
Earth Science
Earth Science | | | | 2016 F | Rapid Response and Novel Research in Earth Science | 45
13
75 | 18
6
44 | 40%
46%
59% | Earth Science
Earth Science | | | | 2016 A
2016 B | koolied Science - Water Resources Steo-2
ceBridge Science Team
Studies with ICESat and CryoSat-2 | 45
16
28 | 8
6
13 | 46% | Earth Science
Earth Science
Earth Science | | | | 2016 A | Airborne Instrument Technology Transition Earth Science U.S. Participating Investigator | 24
17
96 | 4
7
28 | 17%
41%
29% | Earth Science
Earth Science
Earth Science | | | | 2016 F | NASA Data for Operation and Assessment Remote Sensing of Water Quality Utilization of Airborne Visible/Infrared Imaging Spectrometer - Next Generation | 56
44
27 | 15
9
10 | 37% | Earth Science
Earth Science | | | | 2016 E | nonzanario Ambiente Visitate intratetti intanti Stestionnese - Nexi Generaliani
Advanced Information Systems Technology
Instrument Incubator Program
Earth Science Applications: Ecological Forecasting | 137
80
33 | 21
19
13 | 15%
24%
39% | Earth Science
Earth Science | | | | | Citizen Science for Earth Systems Program Space Geodesv Research Program Siroup on Earth Observations Work Programme | 103
8
111 | 16
4
33 | 30% | Earth Science Earth Science Earth Science | | | | 2016 F | search science Applications: Food Security and Agriculture
deliophysics Grand Challenges Research Step-1
deliophysics Grand Challenges Research Step-2
deliophysics Grand Challenges Research Step-2
deliophysics Grand Challenges Research Step-1 | 12
44
40
198 | 1
44
10
197 | 8%
NA
25%
NA | Earth Science
Heliophysics
Heliophysics | | | | 2016 H | feliophysics Guest Investigators Step-1
teliophysics Guest Investigators Step-2
feliophysics Infrastructure and Data Environment Enhancements Step-1 | 181
28 | 197
30
28 | 17%
N/A | Heliophysics
Heliophysics
Heliophysics | N/A | Plus four partial selections | | 2016 H
2016 H | teliophysics Infrastructure and Data Environment Enhancements Steo-2
teliophysics Living With a Star Science Step-1
teliophysics Living With a Star Science Step-2 | 24
74
63 | 7
74
21
233 | 33% | Heliophysics
Heliophysics
Heliophysics | 53 | | | 2016 F | teliophysics Supporting Research Step-1 Heliophysics Supporting Research Step-2 Heliophysics Technology and Instrument Development for Science Step-1 | 235
211
87 | 233
31
86 | | Heliophysics
Heliophysics | | | | 2016 F | teliophysics Technology and Instrument Development for Science Step-2
teliophysics U.S. Participating Investigator Step-1
teliophysics U.S. Participating Investigator Step-2
Computer Notice Multipage Count Investigator | 7
5 | 7
2
ee | 23%
N/A
40% | Heliophysics
Heliophysics
Heliophysics | | | | 2016 M | Asanetospheric Multiscale Guest Investicators Step-1
Asanetospheric Multiscale Guest Investicators Step-2
Cassini Data Analysis Step-1 | 57
40
87 | 55
10
71 | NA
25%
N/A | Heliophysics
Heliophysics
Planetary Science | N/A | | | 2016 C | zassini Data Analysis Step-2
Concepts for Ocean worlds Life Detection Technology Step-1
Concepts for Ocean worlds Life Detection Technology Step-2 | 66
104
83 | 12
104
16 | 18%
N/A
19% | Planetary Science
Planetary
Planetary | N/A | time former to the source but to former as | | 2016 | Discovery Data Analysis Step-1 | 55 | 53 | N/A | r-anetary Science | n/A | was uracouraged from this program but redirected and 1 was discouraged as non-compliant | | 2016 | Discovery Data Analysis Steo-2
Dynamic Power Convertors for Radioisotope Power Systems Steo-1
Dynamic Power Convertors for Radioisotope Power Systems Steo-2 | 34
17
14 | 10
16
4 | N/A
29% | Planetary Science
Planetary
Planetary | N/A | obus one cartial selection not included in data to the left Phase 1s were around \$800k each. Total cost estimates for Phase 1, 2, and 3, all came in at around \$3M | |------------------------------|--|--------------------------|------------------------|---------------------------------|---|--------------------------
---| | 2016 | Emerging Worlds Step-1 Emerging Worlds Step-2 Exobioloon Stee-1 Exobioloop Step-2 | 204
155
239
173 | 201
34
217
27 | N/A
16% | Planetary
Planetary
Planetary Science
Planetary Science | N/A
177
N/A
178 | This does not include stand alone PMEs which are funded from a separate source. One of the 34 selections
Plus three partial selections not included in the 27 selected to the left. | | | Exoclamet Research Peroram Staro 2 PSD only, redundant with Xdiv XRP row for Coverating Temperature Technology at Laboratory Analysis of Returned Samples Step-1 Laboratory Analysis of Returned Samples Step-2 Lunar Data Analysis Step-1 Lunar Data Analysis Step-1 | 30
31
28 | 11
12
31
12 | 43% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 123
600
N/A
252 | Plus one partial selection | | 2016 | Lunar Data Analysis Step-1
Lunar Data Analysis Step-2
Mars Data Analysis Step-1
Mars Data Analysis Step-2 | 63
48
166
118 | 63
10
156
29 | N/A
21%
N/A
25% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | N/A
120
N/A
123 | Plus two partial selections | | 2016
2016
2016 | Maturation of Instruments for Solar System Exploration (MattISSE) Step-1 Maturation of Instruments for Solar System Exploration (MattISSE) Step-2 New Frontiers Data Analysis Program Step-1 New Frontiers Data Analysis Program Step-2 | 80
62
50 | 79
8
33 | N/A
13%
NA | Planetary Science
Planetary Science
Planetary Science
Planetary Science | N/A | | | 2016
2016
2016 | Planetary Data Archiving, Restoration, and Tools Step-1
Planetary Data Archiving, Restoration, and Tools Step-2
Planetary Instrument Concepts for the Advancement of Solar System Observations | 116
89
119 | 113
19
113 | N/A
21%
N/A | Planetary Science
Planetary Science
Planetary Science | 146
N/A | Plus two partial selections | | 2016
2016
2016 | Planetary Instrument Concepts for the Advancement of Solar System Observations
Planetary Science and Technology Through Analog Research Step-1
Planetary Science and Technology Through Analog Research Step-2
Planetary Science Deep Space SmallSat Studies NOI's | 82
50
107 | 62
6
107 | N/A
12%
N/A | Planetary Science
Planetary Science
Planetary Science
Planetary Science | N/A
855
N/A | 5 declined as non compliant wide range of award sizes | | 2016 | Planetar Science Deeo Space SmallSat Studies Step-2 Solar System Deserrations Step-1 Solar System Observations Step-2 Solar System Workings Step-1 Solar System Workings Step-1 Solar System Workings Step-2 | 102
110
90
429 | 19
104
30
376 | 19%
N/A
33%
N/A | Planetary Science
Planetary
Planetary
Planetary | 348
N/A
N/A | plus 5 partial selections | | | Solar System Workinas Stee-2
Astrophysics Data Analysis
Astrophysics Research and Analysis
Astrophysics Theory Program | 299
252
159
N/A | 60
51
54
N/A | 20%
20%
34% | Planetary
Astrophysics
Astrophysics
Astrophysics | 156
120 | not solicited this year | | | Exoolanet Research Program Steo-2 Astro only, redundant with Xdiv XRP row
Fermi Guest Investigator - Cycle 9
K2 Guest Observer - Cycle 3 Step-1
K2 Guest Observer - Cycle 3 Step-2 | 39
184
83
75 | 6
36
N/A
31 | 15%
20%
N/A | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | this line is redundant with Xdv XRP line, its here so that one can see all of the APD selections in one place. | | 2015
2015
2015 | KZ Guest Deserver - Cvcle 4 Step-1 KZ Guest Deserver - Cvcle 4 Step-2 KS Guest Deserver - Cvcle 4 Step-2 Nancy Grace Roman Technology Fellowships NUSTAR Guest Deserver - Cvcle 2 SOFIA Third Generation Science Instrument Step-1 SOFIA Third Generation Science Instrument Step-1 SOFIA Third Generation Science Instrument Step-2 | 127
109
5
185 | N/A
36
3 | N/A
33%
60% | Astrophysics
Astrophysics
Astrophysics | | | | 2015 | Strategic Astrophysics Technology | 4
3
29 | N/A
2
7 | 27%
N/A
67%
24% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | 843 | | | 2015 | Swift Guest Investigator - Cvcle 12 WFIRST Science Investigation Teams and Adjutant Scientists Expositant Research Program Stee-1 Expositant Research Program Stee-2 | 185
38
137
112 | 8
N/A
20 | N/A
18% | Astrophysics
Astrophysics
Cross division
Cross division | N/A
114 | 8 fully funded plus 5 partial selections as well. Astro funded 7 and PSD funded 13 and one oilot study so a total of 20 not including pilot study. | | 2015
2015
2015 | Advancing Collaborative Connections for Earth System Science Biodiversity Carbon Monitoring System CloudSat and CALIPSO Science Team Recompete | 52
21
68
97 | 8
7
15
25 | 33%
22% | Earth Science Earth Science Earth Science Earth Science | | | | 2015
2015
2015
2015 | Cryosphenc Science Earth Science Applications: Socioeconomic Benefits Earth Surface and Interior GRACE and GRACE-FO Science Team | 84
20
59
32 | 17
1
25
20 | 20%
5%
42% | Earth Science
Earth Science
Earth Science
Earth Science | | | | 2015
2015
2015 | Health and Air Quality Applied Sciences Team
loeBridge Observations In Space Validation of Earth Science Technologies | 58
8
24
66 | 13
5
4
22 | 22%
63%
17% | Earth Science Earth Science Earth Science | | | | | KORUS-AO: An International Coocerative Air Quality Field Study in Korea
Land Cover / Land Use Channe.
Modeline Analysis and Prediction
NASA ISRO Synthetic Apenture Radar mission Science Definition Team
NASA ISRO Synthetic Apenture Radar mission Science Definition Team
New (Early Caren Investigator Program in Earth Science | 70
8
44 | 13
5
20
22 | 45% | Earth Science Earth Science Earth Science Earth Science Earth Science | | This croaram uses a binding two Step submission. The 13/70 reflects the fact that 70 were submitted to | | 2015
2015
2015 | Ocean Biology and Biogeochemistry Physical Oceanography Precipitation Measurement Missions Science Team Precipitation Measurement Missions Science Team | 115
71
37
136 | 15
8
60 | 22%
44% | Earth Science
Earth Science
Earth Science | | | | | Satellite Calibration Interconsistency Studies Science Utilization of the Soil Moisture Active-Passive Mission SERVIR Applied Sciences Team Surface Water and Ocean Topography Science Team | 117
43
67 | 37
16
22 | 18%
32%
37%
33% | Earth Science Earth Science Earth Science Earth Science | | | | 2015
2015
2015
2015 | Sustainable Land Imagina-Technology
Understanding Changes in High Mountain Asia
Heliophysics Guest Investigators Step-1
Heliophysics Guest Investigators Steo-2 | 61
202
150 | 12
137
24 | 16% | Earth Science
Earth Science
Heliophysics
Heliophysics | NA | | | 2015 | Heliophysics Infrastructure and Data Environment Enhancements Steo-1 Heliophysics Infrastructure and Data Environment Enhancements Steo-2 Heliophysics Living With a Star Science Steo-1 Heliophysics Living With a Star Science Steo-2 | 15
14
103
92 | 15
8
101
20 | 98% | Heliophysics
Heliophysics
Heliophysics
Heliophysics | NA
51
NA | In this program selected at Step-1 really is binding these were "imited" to submit a Step-2. Normally. Step-1. | | | Helsonbusics Living With a Start Science Step-2
Helsonbusics Supporting Research Step-1
Helsonbusics Supporting Research Step-2
Helsonbusics Technology and Instrument Development for Science Step-1
Helsonbusics Technology and Instrument Development for Science Step-1
Helsonbusics Technology and Instrument Development for
Science Step-2 | 377
251
135
106 | 226
46
134
14 | N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | NA
NA | SOLR = 14/78; MAG = 15/77; ITM = 6/30; HSPHR = 11/66 (three were returned as non-compliant) | | 2015
2015
2015 | Cassini Data Analysis Steo-1 Cassini Data Analysis Steo-2 Citizen science Asteroid Data Education, and Tools Steo-1 Citizen science Asteroid Data Education, and Tools Steo-2 | 97
84
10 | 85
21
10 | N/A
25%
N/A | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 116
NA | This program is actually being run by another Directorate, see solicitation. This program is actually being run by another Directorate, see solicitation. | | 2015
2015
2015 | Discovery Data Analysis Step-1 Discovery Data Analysis Step-2 Freening Worlds Step-1 | 50
39
169
132 | 47
9
164
29 | N/A
23%
N/A | Planetary Science
Planetary Science
Planetary Science | NA
137
NA | The street partial selections in the street of | | | Emeroino Worlds Steo-2 Exobiology Step-1 Exobiology Step-1 Exobiology Step-2 Step-1 Exobiology Step-1 | 247
190
72
121 | 225
30
13 | N/A
16%
18% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | NA
167 | There were 30 selections include two descooes and three pilot studies. The average award size not this ine is redundant with Adv ARP line, its here so that one can see all of the PSD selections in one clace. | | 2015
2015
2015 | Habitable Worlds Stec-2
Havabusa2 Participating Scientist Steo-1
Havabusa2 Participating Scientist Steo-2 | 63
69
46 | 10
69
9 | N/A
20% | Planetary Science
Planetary Science
Planetary Science | 151
NA
56 | One is a partial selection | | 2015
2015
2015 | Laboratory Analysis of Returned Samoles Step-1 Laboratory Analysis of Returned Samoles Step-2 Lunar Data Analysis Step-1 Lunar Data Analysis Step-2 | 18
71
47 | 8
70
12 | 44%
99%
26% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 230
NA
115 | The average award size in year 1 ranges from –\$65K to nearly \$600K | | 2015
2015
2015 | Mars Data Analysis Steo-1 Mars Data Analysis Steo-2 Mars Science Laboratory Participating Scientist Program Steo-1 Mars Science Laboratory Participating Scientist Program Step-2 | 133
101
105
88 | 126
20
104
28 | N/A
20%
N/A
32% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 102
NA | Of the 28 selected four were not for NASA funding and four were partial selections. | | 2015 | New Fronfiers Homesteader-1 New Fronfiers Homesteader-2 Planetary Data Archiving, Restoration, and Tools Step-1 Planetary Data Archiving, Restoration, and Tools Step-2 Planetary Potentian Residentian, and Tools Step-2 Planetary Protection Resistant | 134
84
117
97 | 8
113
24 | N/A
10%
N/A
25%
33% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 990 | one of the 24 was a cartial selection, but it had no effect on the average award size. 3 were funded as procosed, two were one-year pilot studies. | | 2015
2015
2015 | Planetary Science and Technology Through Analog Research Step-1
Planetary Science and Technology Through Analog Research Step-2
Solar System Observations Step-1 | 68
48
70 | 57
8
69 | N/A
17%
N/A | Planetary Science
Planetary Science
Planetary Science | NA
558
NA | 3 were funded as proposed, two were one-year pilot studies. Awards range from ~\$100K to ~\$1M | | 2015
2015
2015 | Solar System Observations Steo-2
Solar System Workings Steo-1
Solar System Workings Steo-2
Astrophysics Data Analysis
Astrophysics Explorer U.S. Participating Investigators | 485
314
303 | 13
403
66
71 | N/A
21%
23% | Planetary Science
Planetary Science
Planetary Science
Astrophysics | 118
NA
132
118 | | | 2014 | Astrophysics Explorer U.S. Participating investigators Astrophysics Research and Analysis Astrophysics Theory Program Expolarinet Research Program Expolarinet Research Program Step 2 Astro only, redundant with Xdiv XRP row Externer Precision Docoler Spectionneter Instrument Step 1 | 151
216
62 | 35
32
14 | 23% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | 155 | plus 10 partial selections | | 2014
2014
2014 | Extreme Precision Doooler Spectrometer Instrument Step-1 Extreme Precision Doooler Spectrometer Instrument Step-2 Fermi Quest Investigator – Cocle 8 K2 Guest Observer – Ovde 1 Step-1 K2 Guest Observer – Ovde 1 Step-2 | 6
6
190
110 | N/A
2
35
N/A | | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | | | 2014
2014
2014 | K2 Guest Observer – Cvcle 2 Step-1 K2 Guest Observer – Cvcle 2 Step-2 Nancy Grace Roman Technology Fellowships | 93
90
76
8 | 27
N/A
26
3 | 34% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | 166 | There were also 9 selected with no funding, presumably proposal from foreign organizations There were also 9 selected with no funding, presumably proposal from foreign organizations | | 2014
2014
2014
2014 | NUSTAR Guest Obserner - Cycle 1 Strategic Astrophysics Technology Swift Guest Investigator - Cycle 11 WFIRST Preparatory Science | 194
28
168
53 | 33
10
32
17 | 17%
36%
19% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | 9. were fully funded, the 10th was a partial selection. wide ranse, from \$50K-\$200K | | 2014
2014
2014 | Expolanet Research Program Steo-1 Expolanet Research Program Steo-2 Advanced Information Systems Technology Atmospheric Composition: Laboratory Research | 169
134
124
45 | 163
24
24
13 | 96%
18% | Cross division Cross division Earth Science Earth Science | | PSD funded 10 out of 72 = 14%, average award size = \$131K. Plus. later. PSD funded two more with a one. | | 2014 | Almospheric Composition: Modelina and Analysis Almospheric Composition: Spectral Climate Sional Carbon Moration System Climate Indicators and Data Products for Future National Climate Assessments Climate Indicators and Data Products for Future National Climate Assessments Computational Modelina Alanoithms and Coherification for | 96
21
71
94 | 18
7
15
25 | 19%
33%
21%
27% | Earth Science
Earth Science
Earth Science
Earth Science | 313 | | | 2014
2014
2014 | DSCOVR Earth Science Aloorithms Earth Science U.S. Participating Investigator GNSS Remote Sensing Science Team | 23
19
20
30 | 7
9
7
10 | 30%
47%
35%
33% | Earth Science Earth Science Earth Science Earth Science | | | | 2014
2014
2014 | HyspIRI Preparatory Airborne Activities and Associated Science: Coral Reef and V
locBridge Research
ICESatt Science Definition Team | 21
23
25 | 10
9
12
7 | 48%
39%
48%
17% | Earth Science Earth Science Earth Science Earth Science Earth Science | | | | 2014
2014
2014 | Land Lover / Land Use Linander Mutal-Source Land Immonito Science Ocean Biolod van di Biodecchemister: Ocean Color Remote Sensing Vicarious (In S Ocean Salirity Field Campaign Physical Oceanography Rapid Response and Novel Research in Earth Science | 12
21
35 | 3
12
7 | 25%
57%
20% | Earth Science Earth Science Earth Science Earth Science Earth Science | | | | 2014 | Kapio response and rover research in Earth Science Remote Sensing Theory for Earth Science Science Team for the OCO-2 Mission Severe Storm Research Solar Irradiance Science Team | 118
47
37 | 22
21
12
7 | 19%
45%
32% | Earth Science
Earth Science
Earth Science | | | | 2014
2014
2014 | Terrestrial Ecology Weather Weather Heliophysics Guest Investigators Step-1 | 13
101
37
117 | 21
12
95 | 21%
32%
N/A | Earth Science Earth Science Heliophysics | N/A | | | 2014
2014
2014
2014 | Heboortvisics Guest Investigators Step-2 Hebiophysics Infrastructure and Data Environment Enhancements Step-1 Hebiophysics Infrastructure and Data Environment Enhancements Step-2 Hebiophysics Infrastructure and Data Environment Enhancements Step-2 Hebiophysics I Jann With a Star Science Step-1 | 90
22
17
118 | 37
21
10
N/A | N/A
59%
N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | N/A
N/A | Interface Region Imagina Societocirach 9/21 selected. Open Data Development Element 20/51 selected. 1. discourance Step-1 proposals in this program are not evaluated, selected or declined. | | 2014 | Heliophysics Living With a Star Science Step-2 Heliophysics Supporting Research Steo-1 Heliophysics Supporting Research Steo-2 Heliophysics Stepheniology and Instrument Development for Science Steo-1 Heliophysics Technology and Instrument Development for Science Steo-1 | 103
323
221
98 | 22
168
39
N/A | 21%
N/A
18%
N/A | Heliophysics
Heliophysics
Heliophysics
Heliophysics | N/A
N/A | The 168 encouraged break down as follows: Heliosothere 45/91, ITM = 21/40. Magnetosothere = 41/105 and
Submitted procosals break down as follows: Heliosothere 80, ITM 24. Magnetosphere 61, and Solar 76. no
Stee-1 procosals in this procram are not evaluated, selected or declined. | | 2014
2014 | Heliophysics Technology and Instrument Development for Science Step-2 Cassini Data Analysis Step-1 Cassini Data Analysis Step-2 Dawn at Ceres Guest Investigator Program Step-1 | 85
101
78
80 | 14
100
19
N/A | 16%
N/A
24%
N/A | Heliophysics
Planetary Science
Planetary Science
Planetary Science | 122
N/A | Only 1 Sites-1 was discouraged for non compliance. Of the 78 proposals submitted to CDAPS. Its Us consultations
were seleted, plus one foreion investigator. Sites-1 proposals in this procram are not evaluated, selected or declined. | | 2014
2014
2014
2014 | Dawn at Ceres Guest Investicator Program Step-2 Discovery Data Analysis Step-1 Discovery Data Analysis Step-2 Emerging Worlds Step-1 | 48
32
27
219 | 9
30
9
196 | 19%
N/A
33%
N/A | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 91
N/A
123
N/A | Is selected from US organizations and one to a foreion PL. The award sizes sonined a wide rance 1 was discourated from this program but redirected and 1 was discourated as non combinant Plus one partial selection. 19 were discouraged from this program but redirected and 4 were discouraged as non compliant 19 were discouraged from this program but redirected and 4 were discouraged as non compliant | | 2014
2014
2014 | Emercina Worlds Step-2 Exobioloay Step-1 Exobioloay Step-1 Exobioloay Step-2 Exobioloay Step-2 Exoblanet Research Program Step-2 PSD only, redundant with Xdiy XRP row | 155
186
144
70 | 33
174
30
10 | 21%
N/A
21%
14% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 160
N/A
183 | One selection was briden funding, and was done as an assumentation. First west budgets: mean = \$160.9
were discourated from this concara but referenced and 3 were discourated as non-combinat.
The 30 selected and the average award size for west 1 include 4 cantial selections.
PSD funded 10 out 172 = 14% severage award size = \$131K Ptp. 1 ster PSD funded two more with a one. | | 2014 | Exonation Research Floridal Step 2 FSD Grilly Techniques with Adv ARP 10W Habitable Worlds Step 2 Laboratory Analysis of Returned Samples Step 1 | 110
72
29 | 100
15
29 | N/A
21%
N/A | Planetary Science
Planetary Science
Planetary Science | N/A
160 | FSb triblies to control (2 = 0.6, decision avails size = 313 K, Fiss, size). FSb triblies into time with a line 10 were discouranced. | Page 5 of 9 | 2014 | aboratory Analysis of Returned Samples Step-2 | 24
82 | 9 72 | 38%
N/A | Planetary Science
Planetary Science | 245
N/A | 8 wars discouraged from this program but redirected and 2 were discouraged as non-compliant | |----------------------------|--|-------------------|-----------------|--------------------------|--|------------------|---| | 2014 | unar Data Analysis Step-1 unar Data Analysis Step-2 fars Data Analysis Step-1 | 51
139 | 14
N/A
28 | 27%
N/A | Planetary Science | 102
N/A | One was a descope, one other asked for 4 years but is only getting 3 (not exactly a descope). No one year | | 2014 | flars Data Analysis Steo-2
Asturation of Instruments for Solar System Exploration (MatISSE) Steo-1
flaturation of Instruments for Solar System Exploration (MatISSE) Step-2 | 104
55
44 | 54
5 | N/A
11% | Planetary Science
Planetary Science | N/A
937 | Only one was discouraged as non compliant | | 2014 | Planetary Data Archiving, Restoration, and Tools Step-1
Planetary Data Archiving, Restoration, and Tools Step-2
Planetary Instrument Concepts for the Advancement of Solar System Observations | 143
105
112 | 23
N/A | N/A
22%
N/A | Planetary Science
Planetary Science
Planetary Science | N/A | 14 were discouraged from this program but redirected. The 105 is a combination of 100 proposals submitted to PDART directly and another 5 that were sent from Three were discouraged. | | 2014 | Planetary Instrument Concepts for the Advancement of Solar System Observations
Planetary Protection Research
Slanetary Science and Technology Through Analog Research Step-1 | 96
19
69 | 12
4
55 | 13%
21%
N/A | Planetary Science
Planetary Science
Planetary Science | 323
135 | There were also three one year pilot studies. In this case the average award size is average of all years, not
14 were discouraged from this program but redirected | | 2014 B | Planetary Science and Technology Through Analog Research Step-2
Small, Innovative Missions for Planetary Exploration Step-1 | 45
56 | 7
50 | 16%
N/A | Planetary Science | 600
N/A | Awards ranged from ~S100K to ~S1M | | 2014 S
2014 S | Imall. Innovative Missions for Planetary Exploration Steo-2
solar System Observations Steo-1
solar System Observations Step-2 | 99
71 | 86
21 | 23%
N/A
30% | Planetary Science
Planetary Science
Planetary Science | N/A
284 | Two were fully selected, but three others were selected for technology development. 13 were discouraged from this program without redirect For SSO as a whole, the average is \$284K. For the NEOO part it's \$423K and for PAST (non-NEOO) it's | | | Solar System Workinos Steo-1
Solar System Workinos Steo-2
Istroohysics Data Analysis | 509
386 | 474
82 | N/A | Planetary Science
Planetary Science
Astrophysics | | 36 were discouraced from this program but redirected. The averace award size is based on the 76 in the SSW portfolio, it doesn't include those that were moved 276 proposals submitted but 2 proposals were returned as non-responsive. 41 selected, including a partial | | 2013 | Astrophysics Research and Analysis | 276
177
198 | 38
27 | 21%
14% | Astrophysics
Astrophysics | 103 | 181 were submitted but only 177 were deemed compliant, 5 were partially funded | | | remi Guest Investigator - Cocle 7 highs of Solar Systems (Astro) stratelic Astroohysics Rechnology and Solar Systems (Astro) | 217
39
18 | 43
5
9 | 20%
13%
50% | Astrophysics
Astrophysics | 121 | All proposers notified by18-Aug-14, 150 days after the proposal due date. | | 2013 3 | with Guest Investigator - Cvcle 10 khanced Component Technology
khanced Collaborative Connections for Earth System Science | 175
82 | 35
11 | 20% | Astrophysics
Earth Science
Earth Science | | | | 2013 / | Atmospheric Composition Campaign Data Analysis and Modeling | 116
68 | 36
27 | 31%
40% | Earth Science
Earth Science | | | | 2013 0
2013 0
2013 0 | arbon Cycle Science
arbon Monitoring System
ryospheric Science | 235
37
32 | 41
17
10 | 17%
46%
31% | Earth Science
Earth Science | 100 | This was an interagency call and the 41/235 = 17% reflects the overall selections. Here is the breakout: 23 | | 2013 E | arth Science Applications: Health and Air Quality arth Science Applications: Water Resources arth Surface and Interior arth Vurface and Interior arth Venture Suborbital -2 | 67
75 | 9 | 13% | Earth Science | | | | 2013 E | anth Venture Suborbital -2 ceBridge Science Team and Cover / Land Use Change | 33
18 | 5 | 49%
15%
56%
29% | Earth Science Earth Science Earth Science Earth Science | | | | 2013 | and Cover / Land Use Change Step-1
IASA Data for Operation and Assessment | 71
44 | 33
13 | 29%
46%
30% | Earth Science | | | | | ASA Energy and Water Cycle Study lew (Early Career) Investigator Program in Earth Science locan Biology and Biogeochemistry locan Salinity Field Campaian Analysis and Planning locan Salinity (Feld Campaian Analysis) | 60
131
11 | 19
22
2 | 32%
17%
18% | Earth Science
Earth Science | 79 | | | 2013 0 | Ocean Salinity Field Campaign Analysis and Planning Ocean Salinity Science Team | 2
31 | 2 14 | 100%
45% | Earth Science
Earth Science
Earth Science | | | | 2013 F
2013 F | Dean Vector Winds Science Team PACE Science Team Physical Oceanography | 49
41 | 19
11 | 38%
39%
27% | Earth Science
Earth Science
Earth Science | | | | 2013 3 | Suomi NPP Science Team and Processing Systems for Data Records | 36
119
40 | 9
45
32 | 25%
38%
80% | Earth Science
Earth Science
Earth Science | 520
162 | proposers notified by 2/20/2014 | | 2013 | erra and Adua – Algorithms – Existing Data Products errestrial Ecology errestrial Hydrology he GLOBE Program Implementation Office | 56
70 | 6
15 | 11%
21% | Earth Science
Earth Science | | | | 2013 | he GLOBE Program Implementation Office he Science of Terra and Aqua Veather lelicohvsics Grand Challences | 208
52
47 | 56
16 | 25%
27%
31%
23% | Earth Science Earth Science Earth Science Heliophysics | 500 | 214 submitted. 2 were moved to A.46 and others withdrawn or non compliant All decisions communicated by email on 1024 this is the theory contamn and 214 | | 2013 | feliophysics Guest Investigators Step-1 | 47
174
83 | 11
73
22 | N/A | Heliophysics | | this is the theory program in 2013. Only 73 were encouraged to submit a Step-2 proposal but more than that did. see Heliophysics Guest | | | teliophysics Guest Investigators Step-2 teliophysics Infrastructure and Data Environment Enhancements teliophysics Living With a Star Science teliophysics Supporting Respects Step-1 | 34
187
306 | 14
25
294 | 27%
41%
13%
N/A | Heliophysics
Heliophysics
Heliophysics | | only 12 were deemed Non-Compliant. All others were invited to submit a Step-2. | | | teliophysics Supporting Research Step-1
teliophysics Supporting Research Step-2
teliophysics Technology and Instrument Development for Science | 261
92 | 35
13 | 14% | Heliophysics
Heliophysics
Heliophysics | | | | | Solar and Heliosoberic Physics
strobiology: Exobiology and Evolutionary Biology
assani Data Analysis | N/A
148
99 | N/A
27
10 | 18% | Heliophysics
Planetary Science
Planetary Science | | Wasn't competed. Note: only 144 were reviewed 108 proposals total: 99 from US institutions, 10 DAPs were funded, three of which include participating | | 2013 I | Josmochemistry strument Concepts for Europa Exploration aboratory Analysis of Returned Samples | 92
30
23 | 24
15 | 26%
50%
52% | Planetary Science
Planetary Science
Planetary Science | 155
1080 | There were 6 severe descopes in COS, one of which was a partial-year bridge award which I don't normally 2 noncompliant proposals were not reviewed. ICEE was limited to one year grants. Average awarded | | 2013 | Association of the Market Mark | 102
135 | 30
27 | 29%
20%
10% | Planetary Science
Planetary Science | 112
138 | 30 were selected for funding fin full or in part) out of 103 submitted but one declared non compliant | | 2013 I
2013 I | Acon and Mars Analog Mission Activities (MMAMA)
Jear Earth Chiect Obsensations (NEOO)
Drigins of Solar Systems (Planetary)
Duter Planets Research | 32
90 | 11
13 | 10%
34%
14% | Planetary Science
Planetary Science
Planetary Science | 252 | 4 remain selectable. Award sizes range from ~85 to ~600 K On 12/05 first 5 selections have been made. In spring more selections were made bringing the total up to | | | | 154
49
113 | 22
20
23 | 14%
41% | Planetary Science
Planetary Science
Planetary Science | 105 | Initial 15 calections abus 1 partial from fall 2013 increased to 20 full-ulunded abus 1 partial in Spring 2014 | | 2013 | Janeatary Amospheres (PATM) Planetary Geology and Geophysics (PGG) Planetary Instrument Concepts for the Advancement of Solar System Observations | 131
113 | 32
12 | 24%
11% | Planetary Science
Planetary Science | | Initial 14 selections from fall 2013 increased to 24 fully-funded out of 113 (20%) plus 1 sartial in Spring 2014.
135 were submitted. 4 were withdrawn and one non-combliant returned without review. We received 117 proposals, 4 were found non-compliant so only 113 were peer reviewed. | | 2012 | Planetary Mission Data Analysis
strophysics Data Analysis
strophysics Research and Analysis | 40
291
178 | 90 | 19% | Planetary Science
Astrophysics
Astrophysics | 97
383 | The received 117 phoposals, 4 were rount morrormals so only 113 were peer reviewed. PMDAP received 42 proposals in 2013, but one was withframe by the proposals and one non-compliant 9/11 APRA PIs informed of decisions. 173 days after the due date and 12 weeks after the end of the review. | | | strophysics Theory Program ucidid Science Team | 181
8
223 | 28
3
50 | 15%
38%
22% | Astrophysics
Astrophysics
Astrophysics | 137 | Pls were notified 118 days after the due date. | | 2012 H | Cepler Guest Observer - Cycle 5
Cepler Participating Scientist Program
Lancy Grace Roman Technology Fellowships | 63
34
12 | 10 | 0%
29% | Astrophysics
Astrophysics | | Originally it was 25 Proposals selected (22 were to be funded; 3 foreign Pis not funded) but then the failure
Pls notified 118 days after the due date and 7 1/2 weeks after the last review day | | 2012 0 | Solid Solar Systems (Astro) SOFIA GO Cycle 2 Spitzer GO Cycle 12 | 46
112 | 12
35 | 26%
31% | Astrophysics
Astrophysics | 152 | Pis notified 116 days after the due date and 7.1/2 weeks after the last review day | | 2012 S
2012 S
2012 S | pitzer GO Cycle 12 Strategic Astrophysics Technology Swift Guest Investigator – Cycle 9 | 137
38
158 | 38
9
45 | 28%
24%
28% | Astrophysics
Astrophysics | 580 | 9 proposals totaling \$5.2M in Year 1 awards were selected. In addition, there were 4 SAT TDEM proposals. Of the 45 recommended for selection 7 do not receive any funding. Received 38 proposals with Budgets but. This program is intent with NSF NASA selected 10 proposals (3 intensitiations) and NSF clains to select the | | | heoretical and Computational Astrophysics Networks
informe Instrument Technology Transition
throspheric Composition: Modeling and Analysis
timospheric Composition: Upper Atmospheric Composition Observations | 53
33
85 | 10
6 | 19%
18% | Astrophysics
Earth Science
Earth Science | 150 | This program is joint with NSF, NASA selected 10 proposals (3 investigations) and NSF plans to select the | | 2012 / | timospheric Composition: Upper Atmospheric Composition Observations loudSat and CALIPSO Science Team Recompete | 34
94
51 | 25
26 | 74%
28% | Earth Science
Earth Science | | | | 2012 E
2012 E | Touches and California Company and California Company and California Californ | 63 | 10
14
8 | 22%
57% | Earth Science
Earth Science
Earth Science | 120 | | | | icological Forecasting for Conservation and Natural Resource Management be Bridge n-Space Validation of Earth Science Technologies | 66
10
23 | 11
7
4 | 17%
70%
17% | Earth Science
Earth Science
Earth Science | | | | 2012 I | nterdisciplinary Research in Earth Science
and Cover/Land Use Change Step-1 | 145
24 | 19
16 | 13%
67% | Earth Science
Earth Science | | 11/13, selections made for one Subelement but the others are still to come, thus the selection rate will rise. 24 proposals submitted to Steo-1 of which 16 were invited to submit a Steo-2 proposal. 10 of 16 selected | | 2012 | and Cover/Land Use Chance Step-2 Asking Earth System data records for Use in Research Environments fodeling, Analysis, and Prediction Doesn Biology and Biogeochemistry | 16
81
161 | 10
27
36 | 63%
33%
22% | Earth Science
Earth Science | | 24 proposals submitted to Steo-1 of which 16 were invited to submit a Steo-2 proposal, 10 of 16 selected | | | Deean Biology and Biogeochemistry Physical Oceanography Precipitation Measurement Missions (PMM) Science Team Studies with ICESat and CryoSat-2 | 72
43
129 | 17
13
57 | 24%
30%
44% | Earth Science
Earth Science | 132 | | | 2012 13 | Studies with ICESat and CryoSat-2
Surface Water and Ocean Topography Mission SDT
errestrial Ecology | 129
41
45 | 12
20 | 29%
44% | Earth Science
Earth Science | 170 | Stee 4: 90 appearsh presided 20 appearanced for Stee 2:
Stee 2: 30 appearsh presided 42 appearanced | | | Seospace Heliophysics Guest Investigators program Seospace Heliophysics Guest Investigators program Seospace Heliophysics Guest Investigators program Seospace Low Cost Access to Space | 58
10 | 10 | 13%
17%
20% | Earth Science
Heliophysics
Heliophysics
Heliophysics | 170 | Sec. 1. 80 procosals received. 28 encouraged for Stee 2. Stee 2. 30 procosals received. 12 recommended
Stee 2 only. The Guest Investigators program (GPV) was not offered as a stand-alone element of the ROSES
Stee 2 only. The IDES was not offered as a stand-alone element of the ROSES 2012 NRA, but it was an
Steep 2 only. The LCAS was not offered as a stand-alone element of the ROSES 2012 NRA, but it was an
steep 2 only. The LCAS was not offered as a stand-alone element of the ROSES 2012 NRA, but it was an
steep 2 only. The ROSES 2012 NRA, but it was an | | 2012 | Seospace Supporting Research Program | 134
29 | 12
16
10 | 22%
12%
34% | Heliophysics
Heliophysics | | Step-2 only. The SR was not offered as a stand-alone element of the ROSES 2012 NRA, but it was an
Step-2 only | | 2012 | Sebosmode Orac Limitariana Camanisariana Solar and Heliosoberic Privsics Sassini Data Analysis Cosmochemistry | 232
112
85 | 43
23
29 | 34% | Heliophysics
Planetary Science
Planetary Science | 150 | Step-2 only Of these 9 were selected as participating scientists as well. Two more partial awards were made. The | | 2012 I | | 25
24
18 | 3 | 12%
33% | Planetary Science
Planetary Science
Planetary Science | 100 | 1 also received bridge funding, not included in the 8 given in column E. | | 2012 I | unar Advanced Science and Exploration Research
Mars Data Analysis | 102
93 | 13
29 | 13%
31% | Planetary Science
Planetary Science | 100 | | | 2012 I
2012 I
2012 I | Mars Fundamental Research (MFRP) daturation of Instruments for Solar System Exploration (MatISSE) daven Participating Scientist Program | 123
35
35 | 30
6
7 | 24%
17%
20% | Planetary Science
Planetary Science
Planetary Science | 871
107 | Stats given are for US investigations only. Non-US Institutions: 2/9 (22%) selection rate | | 2012 | Aoon and Mars Analoa Mission Activities (MMAMA)
lear Earth Object Observations (NEOO)
highs of Solar Systems (Planetary) | 27
26
101 | 3
12
13 | 11%
46%
13% | Planetary Science
Planetary Science
Planetary Science | 86
546
121 | Note that the avg award size has nearly doubled from previous years, due in large part to MEO's lack of held | | | Julius Di Sorial Systemis (Planetary) Julier Planet Research Planetary Astronomy (PAST) Planetary Atmospheres (PATM) | 143
42 | 32
7 | 22% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | | | | | | 90
140
41 | 12
19
13 | 14%
32% | Planetary Science
Planetary Science | 91 | Award sizes ranged from \$37K to \$160K Hope to make more selections later in the year
12 full that available contains elections as well. Award size is \$108K when candists averaged in with full awards.
Average award size does not include Carto, NESSF, ECF, etc. Plus 6 seed or bridge awards | | | Planetary Mission Data Analysis Planetary Protection Research Interphysics Data Analysis Introphysics Research and Analysis | 21
278
163 | 63
31 | 5%
23%
19% | Planetary Science
Astrophysics
Astrophysics | 150
101 | NOTE: Was covered by the MATisse Program | | | Astrophysics Research and Analysis Astrophysics Theory Program ermi Guest Investigator — Civile 5 | 199
224
61 | 33
67 | 17%
30%
34% | Astrophysics
Astrophysics
Astrophysics | | 85 normal and 2 large awards made. Average for the 65 one and two year proposals was ~ 80 K (75 K for
Plus 4 from foreign Pla/institutions.17 proposals were funded. Proposals due: 20 January 2012. Proposers | | 2011 | (eoler Guest Observer – Cvole 4
lancy Grace Roman Technology Fellowships
prigins of Solar Systems (Astro) | 16
36 | 3 | 19%
8% | Astrophysics
Astrophysics | 195 | Australia annual sina abancad bu ana larga annual Cubacannash, bug ana unar annuada mara salastad. If these | | 2011 S
2011 S | strateoic Astrophysics Lechnology Wrift Guest Investigator – Cycle 8 Doportunities in Education and Public Outreach for Earth and Space Science EPO | 48
152
75 | 10
32
19 | 21%
21%
25% | Astrophysics
Astrophysics
Cross division | 185 | received what side sements or our state what, subdisciplinative two fort year awards were sements, it most followers that our the sements of | | 2011 S
2011 S | Departunities in Education and Public Outreach for Earth and Space Science EPO
Supplemental Education Awards for ROSES Investigators I
Supplemental Outreach Awards for ROSES Investigators I | 74
23
10 | 18
5
2 | 24%
22%
20% | Cross division
Cross division
Cross division | | lindicates the Sect 2010 due date
lindicates the Sect 2010 due date | | | CCESS Advancing Collaborative Connections for Earth System Science schanged Information Systems Technology timospheric Composition: Laboratory Research | 37
88
50 | 12
18 | 32%
20%
32%
32% | Earth Science
Earth Science | 10 | | | | Atmospheric Composition: Laboratory Research Zerbon Monitoring System Zomputational Modeling Aborithms and Cyberinfrastructure Zerbon Science Applications: Disasters | 62
54 | 16
18
8 | 29%
15% | Earth Science
Earth Science | | | | | | 65
65
46 | 17
12
17 | 26%
18%
37% | Earth Science
Earth Science | Ē | | | 2011 | Earth Science Applications: Wildland Fires SNSS Remote Sensing Science Team furnicane Science Research Program | 21
50 | 9 | 37%
43%
22% | Earth Science Earth Science Earth Science Earth Science | | | | 2011 I
2011 I | tyspiRI Preparatory Airborne Activities and Associated Science ceBridge ceSAT2 Science Definition Team | 49
33
35 | 14
9
16 | 29%
27%
46% | Earth Science
Earth Science | | | | 2011 I
2011 I
2011 I | moacts of Climate Variability and Chance on NASA Centers and Facilities
interdisciplinary Research in Earth Science
and Cover/L and Use Change Step-1 | 11
51
90 | 6
9
26 | 55%
18%
29% | Earth Science
Earth Science
Earth Science | | | | 2011 L
2011 I | and CoverLand Use Chance Stee-2
lew (Early Career) Investigator Program in Earth Science
Physical Oceanography | 26
73 | 10
15 | 38%
21%
23% | Earth Science Earth Science Earth Science | 88 | the overall selection rate was 10/90 = 11% | | 2011 3 | Satellite Calibration Interconsistency Studies Science Definition Team for the DESDvnl-Radar Mission | 41 | 11
15 | 27%
39% | Earth Science
Earth Science | | | | 2011 3 | Science Team for the OCO-2 Mission
SERVIR Applied Sciences Team
Space Archaeology | 58
17 | 24
11
6 | 80%
19%
35% | Earth Science
Earth Science | | | | 2011 | errestrial Ecology | 107
145
23 | 16
29
9 | 15%
20%
39% | Earth Science
Heliophysics
Heliophysics | 230
144
79 | Final selection made in late May 2012 The average award amount is somewhat more complicated than implied: the average for the three | | 2011 H | telicohysics Data Emironment Enhancements
telicohysics Guest Investicators Program (Geospace)
telicohysics Guest Investicators Program (Self Inniv) | 80
91 | 10 | 39%
13%
13% | Heliophysics
Heliophysics | 122 | | Page 6 of 9 | 2011 | ivino With a Star Taroeted Research and Technology Astrobiology Science and Technology for Exploring Planets (ASTEP) Astrobiology Science and Technology Instrument Development (ASTID) | 122
23
37 | 31
2
7 | 9%
19% | Heliophysics
Planetary Science
Planetary Science | 292 | Coe of the two awards was not full funding. | |--------------------------------------
--|---|----------------------------|---------------------------------|---|-------------------------------|--| | 2011
2011
2011
2011 | Astrocinology: Exporatogy and Evolutionary Biology Zassin Data Analysis Cosmochemistry RAIL Guest Scientist Program Shoratory Analysis of Returned Samples | 161
92
80
24
17 | 28
18
27
9
5 | 34% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 187
89
154
65 | including 2 partial selections, 4 plot studies. 82 proposals from US institutions. 8 of the 18 selected included Participating Scientist (PS) awards as well. PIME proposal not included, 27 full selects, 2 partial bridge funding awards not included in selected column. | | 2011 | .unar Advanced Science and Exploration Research Mars Data Analysis Mars Fundamental Research (MFRP) Mon and Mars Analon Mission Activities (MMAMA) | 123
98
128
32
33 | 26
21
20
5 | 16%
16% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 117
105
93
42 | | | 2011
2011
2011 | Near Earth Obiect Observations (NEOO) Discontinuo of Solar Svatems (Planetarvi Duter Planets Research Janetary Astronomy (PAST) Janetary Astronomy (PAST) | 103
131
60
106 | 20
27
14
23 | 19%
21%
23% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 114 | Also one partial (1 Yr) selection not included. This is actually out of 61 proposals because I took on one | | 2011 | Planetary Almosoheres (PATM) Planetary Geoty and Geophysics (PGG) Planetary Instrument Definition and Development Planetary Mission Data Analysis Planetary Mission Data Analysis Planetary Protection Research sterophysics Data Analysis | 128
91
45 | 31
11
12
3 | 12% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 98
273
107 | Average award size does not include Carto, NESSF, ECF, etc. Also 6 seed or bridge awards In addition to the 3 full selections (one for three years in duration, two for four years in duration) two more | | 2010
2010
2010 | histroohvsics Research and Analysis
Astroohvsics Theory Program
Ferni Guest Investigator – Cycle 4 | 19
186
166
193
208 | 66
39
33
87 | 23%
17%
42% | Astrophysics
Astrophysics
Astrophysics | 86 | This refers to proposals, not investigations suborbital projects may be split | | 2010
2010
2010 | Kepler Suest Observer - Civole 3 (sepler Participatino Scienists 2 (Members of the Euclid Science Team Drigins of Solar Systems (Astro) Strateric Astronywirs Technology | 40
30
2
36
59 | 12
0
6 | 40%
0%
17% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics | 109 | Success rate by dollars awarded/requested = \$1.0M\$2.75M = 36% | | 2010
2010
2010
2010 | Strateoic Astrochesics Technology
Suzaku Guest Disener - Cvcle 6
Swift Guest Investigator - Cycle 7
Decorumities in Education and Public Cutreach for Earth and Scace Science EPO
Sucolemental Education Awards for ROSES Investigators I | 91
168
92
17 | 40
39
22
6 | 23%
24%
35% | Astrophysics
Astrophysics
Cross division
Cross division | 20 | Notified on 28 February 2011 101 days after due date (by costino the tarcet list on the Suzaku web cace)
of proposals were selected (for time) out of a total of 182 submitted, which represents -34% success rate,
lindicates the Sect 2010 due date. | | 2010
2010 | Supplemental Education Awards for ROSES Investigators II
Supplemental Outreach Awards for ROSES Investigators I
Supplemental Outreach Awards for ROSES Investigators II | 16
12
12
28
99 | 5
6
6
12 | 50%
50% | Cross division Cross division Cross division Earth Science Earth Science | | Il indicates the March 2011 due date Il indicates the Sept 2010 due date Il indicates the Sept 2010 due date Il indicates the March 2011 due date One was non comoliant so it was 15/98 viable proposals | | 2010 | Acceleration Operational Use of Research Data Mykanead Component Technology (ACT) Mynascheric Composition: Aura Science Team Mynascheric Composition: Aura Science Team Mynascheric Composition: Modelina and Analysis Zathon Cycle Science Zathon Mynascheric System | 44
59
139
24 | 27
18
34
16 | 61%
31%
24% | Earth Science Earth Science Earth Science Earth Science | | Crief was not continued and it was 12-90 Value unbuckets | | 2010 | Zahon Monitoring System LARREG Science Team Limste and Biological Response. Research and Applications Prososheric Science anth Science Applications Passability Studies: Public Health anth Science Applications Passability Studies: Public Health | 21
152
47
24 | 11
15
16
9 | 10%
34%
38% | Earth Science Earth Science Earth Science Earth Science | | | | 2010 | arth Scence U.S. Participating Investigator arth Surface and Interior arth Suystem Data Records Uncertainty Analysis Beodesiz Beodesiz Beodesiz Inadina | 16
39
41
20 | 20
21
15 | 38%
51%
51%
75% | Earth Science Earth Science Earth Science Earth Science | | | | 2010
2010
2010
2010 | rivsolki Preparatory Activities Using Existing Imagery naturnent Incubator and Coveril and Use Change Modeling, Analysis, and Prediction | 19
83
49
15 | 5
16
7
6 | 19%
14%
40% | Earth Science Earth Science Earth Science Earth Science | | The selection rate is for all crossess. There were only 25 step-2 crossals so the selection rate for step-2 | | 2010
2010
2010 | NASA Energy and Water Cycle Study
WPP Science Team for Climate Data Records
Desan Salinity Field Campaign | 96
71
18
32
117 | 18
34
7
11 | 19%
48%
39%
34% | Earth Science Earth Science Earth Science Earth Science | | | | 2010
2010
2010
2010
2010 | Coest Sulfirty Science Team Counting Regional Study (SEAC4RS
sepsoaces Science
legislated Science
telepotrysics Data Environment Enhancements
telepotrysics Theory
Lung With a Star Targeted Research and Technology | 119
18
32 | 66
25
10
10
31 | 56%
21%
56%
31%
22% | Earth Science Heliophysics Heliophysics Heliophysics Heliophysics | 132
68
369 | Ava new award in program year 1: LCAS = 220 K: DP = N/A and Req = 124 K | | 2010 | Solar and Heliosoberic Physics
Austrobioloxy Science and Technoloxy for Exolorino Planes (ASTEP)
strobioloxy Science and Technoloxy Instrument Development (ASTID)
strobioloxy Exobioloxy and Evolutionary Bioloxy
assini Data Analysis | 141
175
37
42
159 | 31
30
5
8
31 | 14%
19%
19% | Heliophysics
Planetary Science
Planetary Science
Planetary Science | 959
279
160 | Ava new award in program year 1: LCAS = 326 K: DP = 171 and Rea = 125 K 137 proposals received. 1 declared non-compliant and returned. 136 reviewed: 32 fully selected. 6 partially. | | 2010 | Josmochemistry
n-Space Propulsion | 79
60
12
20 | 16
24
3
9 | 40%
25% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | | Triace letters sent after 140 days. Final Letters sent after 290 days. Selectables remain cending budget.
PME proposal not included. 24 full selects, 6 parial bridge funding
awards not included in selected column.
Each for a \$250K, 6 month Phase I study effort "with the possibility to continue via down-select to Phase II. | | 2010
2010
2010 | aboration Analysis of Returned Samoles umar Advanced Science and Ecologration Research fars Data Analysis fars Fundamental Research (MFRP) foon and Mars Analoo Mission Activities (MMAMA) MSL Participating Scientists Procur | 121
95
128
16
148 | 24
25
6
29 | 20%
38% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 132
95
112
58 | Plus two partial selections | | 2010
2010
2010
2010 | lear ratin Genera Gozensensons i nec (CO) highs of Solar Systems (Planetary) Duter Planets Research Planetary Astronomy (PAST) | 15
93
123
45 | 0
17
29
10 | 0%
18%
24% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 80
102
89 | We were hooking to be able to fund with the anticipated plus-up to the NECO geogram but we were under a
Core bill PME not included here. Timpe letters sent after 140 days. final letters sent after 290 days.
only 9 full one was a partial (one year) award. | | | Planetary Atmoschees, PATM Planetary Geotory and Geochrysics (PGG) Planetary instrument Definition and Development Planetary Instrument Definition and Development Planetary Protection Data Analysis Planetary Protection Research storphysics Data Analysis | 93
106
96
18 | 25
30
11
6 | 27%
28%
11%
33%
25% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 107
98
269
80
160 | Max thinks that there were 9 additional cartial selections this year | | 2009
2009
2009 | Astrophysics Research and Analysis Astrophysics Theory Program | 165
143
200
182 | 73
45
37
77 | 31%
19%
42% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | | This refers to proposals, not investigations suborbital projects may be split
36 selected 10/21/2009. Addnl selection 2/23/2010 | | 2009
2009
2009
2009 | SALEX Guest investigator – Cycle 6 (epjer Guest Observer – Cycle 2 MOST U.S. Guest Observer – Cycle 2 Drigns of Solar Systems (Astro) | 81
54
12
30 | 33
27
4
9 | 41%
50%
33%
30% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | 93 | | | 2009
2009
2009 | SPICA Science Investigation Concept Studies Suzaku Guest Observer – Ozole 5 Swift Guest Investigator – Ozole 5 Swift Guest Investigator – Ozole 6 Technology Development for Expolaret Missions Doordunlise in Education and Public Outreach for Earth and Space Science EPO | 88
169
34
103 | 48
56
7
27 | 33%
21% | Astrophysics Astrophysics Astrophysics Astrophysics Cross division | | | | 2009
2009
2009
2009 | Supplemental Education Awards for ROSES Investigators I
Supplemental Education Awards for ROSES Investigators II
Supplemental Outreach Awards for ROSES Investigators I
Supplemental Outreach Awards for ROSES Investigators II | 10
10
9 | 7
7
6
6 | 70%
70%
67% | Cross division
Cross division
Cross division
Cross division | 21
17 | | | 2009 | ACCESS Advancing Collaborative Connections for Earth System Science
Vir Qualify Apolled Sciences Team
lithorne Instrument Technology Transition
Nanoscheric CO2 Observations from States
Atmoscheric CO2 Observations of Control States
Atmoscheric CO2 Observations (Additional Properties of Prop | 35
48
31
15
26 | 11
19
7
7 | 40%
23%
47% | Earth Science Earth Science Earth Science Earth Science Earth Science | | | | 2009
2009
2009 | Atmosohene Composition: Modeling and Analysis CloudSat and CALIPSO Science Team Recompete Earth Science for Decision Making: Gulf of Mexico Region SSP Venture-class Science Investigations: Earth Venture-1 | 77
83
54
35 | 18
33
13
5 | 23%
40%
24% | Earth Science Earth Science Earth Science Earth Science Earth Science | | | | | Slory Science Team
turticane Field Experiment
tyzo IRI Precentation Activities Usina Existina Imagery
cellifidae
cellifidae Support for 2010 Activities | 30
26
28
44 | 14
11
6
22 | 50% | Earth Science Earth Science Earth Science Earth Science | | | | 2009
2009 | zeterolos: support research in cavities and Cover/Land Use Chance kew (Early Career) Investigator Program in Earth Science Dean Biology and Biogeochemistry | 112
62
71
34 | 25
9
18
8 | 15%
25%
24% | Earth Science Earth Science Earth Science Earth Science Earth Science | | | | 2009
2009
2009 | Ocean Vector Winds Science Team Physical Oceanography Precipitation Science Precipitation Science | 38
32
126
112 | 20
12
58
20 | 53%
38%
46% | Earth Science Earth Science Earth Science Earth Science | | | | 2009 | Seminate semination tributions
Some Archaeological Socience with ICEarth Sciencest and CryoSat-2
errefracth Science with ICEarth Sciencest and CryoSat-2
ferrefracth Sciencestrial Ecology
the Science of Terra and Aqua
Jacuses and Consequences of Solar Cycle 24 CCMSC
Jacuses and Consequences of Solar Cycle 24 CCMSC | 37
64
325
56 | 15
12
87
15 | 19%
27% | Earth Science Earth Science Earth Science Earth Science Heliophysics | 109 | | | 2009
2009
2009
2009 | Jausses and Consequences or the Minimum of Solar Cycle 24 Boospace Science - lelicohvsics Data Emironment Enhancements - lelicohvsics Cuest Investigators Program (Geospace) | 58
70
18
74 | 15
16
11
14 | 26%
23%
61%
19% | Heliophysics
Heliophysics
Heliophysics
Heliophysics | 150
67
114 | Avo new award in program year 1: LCAS = 359 K: IDP = 147 K and Reg = 121 K | | 2009 | Heliophysics Guest Investigators Program (S&H only) Juling With a Star Targeted Research and Technology Solar and Heliopsotheric Physics sterobiology: Exobiology and Evolutionary Biology Targetin Data Analysis Agents Data Analysis | 66
137
120
136
80 | 15
31
20
40
23 | 17%
29% | Heliophysics
Heliophysics
Heliophysics
Planetary Science | 103
129
155 | Avo new award in orogram year 1: LCAS = 330 K: DP = 220 K and Reg = 113 K
137 proposals received. 1 declared non-compliant and returned. 136 reviewed; 32 fully selected, 6 partially | | 2009
2009
2009
2009 | Zassini Data Analvais Zosmochemistry Dawn at Vesta Participating Scientists abonatory Analvais of Returned Samples unar Advanced Science and Extoration Research | 62
60
21
96 | 29
18
12
31 | 30%
57%
32% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 148
62
215
104 | | | 2009
2009
2009 | Mars Dala Analysis Mars Fundamental Research (MFRP) doon and Mars Analoa Mission Activities (MMAMA) tear Earth Chies Observations (NEOO) Choirin of Solar Systems (Planetary) | 96
105
131
NA
21 | 39
26
NA
11 | 37%
20%
NA | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 102
96 | Not Solicited in ROSES 2009 | | 2009
2009
2009 | Dicinis of Solar Svatems (Planetarv) Duther Planets Research Planetary Astronomy (PAST) Planetary Astroscheres (PATM) Planetary Atmoscheres (PATM) Planetary Geology and Geophysics (PGG) | 101
128
35
96
114 | 25
10
25
36 | 20% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 97
86
105
97
78 | | | 2009
2009
2009
2008 | Planetary Instrument Definition and Development Planetary Mission Data Analysis Planetary Protection Research Astrophysics Data Analysis | 110
41
10
95 | 15
15
6
34 | 14%
37%
60% | Planetary Science
Planetary Science
Planetary Science
Astrophysics | 258
89
137 | Letters sent 10/20 | | 2008 | Astrophysics Research and Analysis Astrophysics Theory Program Fermi Guest Investigator - Cycle 2 ALEX Quest Investigator - Cycle 5 Geoler Guest Diseaser - Cycle 1 | 137
177
198
70 | 37
39
81
37 | 41% | Astrophysics
Astrophysics
Astrophysics
Astrophysics
Astrophysics | 267
111 | Total oncosed = 134 if you include Co-I crososals. 125 indecendent investisations crososed. 28 fully-
emails selecting 30 on 102/708 and nine additional selections were made in Feb. 2009
There is one froing reprosal.
3400xxxx proposal. 1300 kexc selected.
Throw were to foreign Pls. | | 2008
2008
2008
2008 | MOST U.S. Guest Observer - Cvcle 1 Suzaku Guest Observer - Cvcle 4 Swift Guest Investigator - Cvcle 5 Annised Information Systems Research | 12
99
154
110 | 4
34
57
12 | 33%
34%
37%
11% | Astrophysics
Astrophysics
Astrophysics
Cross division | | 1 grant at 135 K, a bunch of grants at 38 and a few at 25 K and some smaller ones and 13 unfunded foreign
email sent March 27, 2009. Official letters went out 4/10/2009. | | 2008
2008
2008 | Opportunities in Science Mission Directorate Education and Public Outreach Diricins of Solar Systems Succlemental Education I (Dec 08 due date) Succlemental Education I (I Abril 09 due date) Supplemental Outreach I (Dec 08 due date) | 74
94
16
15 | 18
31
6
5 | 24%
33% | Cross division Cross division Cross division Cross division | 132 | | | 2008
2008
2008
2008 | supplemental Cutreach I (Dec 08 due date) Supolemental Cutreach I (April 09 due date) Advanced Component Technology (ACT) Advanced Information Systems Technology (AIST) Advanced Information Systems Technology (AIST) Atmospheric Composition, field: Surface, Balloon, and Airborne Observations | 12
19
85
100
56 | 10
16
20
37 | 53%
19%
20%
66% | Cross division Cross division Earth
Science Earth Science Earth Science | | budgets under neopliation. ~ 1M each over three years A total dollar value over a three-year period of approximately \$25 million | | 2008
2008
2008
2008 | Atmospheric Composition: Laboratory Research Biodiversity Carbon Cycle Science Chospheric Science | 51
54
offerred this
offerred this
142 | | 37%
17% | Earth Science Earth Science Earth Science Earth Science | | | | 2008
2008
2008 | Decision Support through Earth Science Research Results Earth Science Applications Feasibility Studies Earth Science for Decision Making: Gulf of Mexico Region Earth Science U.S. Participating Investigator Earth Science U.S. Participating Investigator | 142
80
69
16
118 | 36
31
35
6 | 38% | Earth Science Earth Science Earth Science Earth Science Earth Science | | Initial selections announced: 4/24/2009, then addril selections 5/12/2009) Initial selections announced: 4/24/2009, then addril selections 5/12/2009) 28 selected in may. +9 more 8/2009 | | | Geospace Science
furricane Science Research | 51 | 17 | 25%
33% | Earth Science
Earth Science | | 3 additional selections made 1/23/09 | | | CESat-II Science Definition Team
Land Cover/Land Use Chance | 38 | 14
18 | 37% | Earth Science
Earth Science | | 14 of 38 SDT selected; 1 Team Leader selected on 9/18/08
Received. 66 steo1 proposals, out of which 48 proposals were invited to submit full proposals. Selected 18 | |----------------------|--|-------------------------------|------------------------------|--------------------------|--|-------------------------|---| | 2008 | Modeling, Analysis, and Prediction NASA Energy and Water Cycle Study - Water Quality | 158
16 | 52
4 | 33% | Earth Science
Earth Science | | | | | Ocean Biolox and Bioseochemistry Ocean Salinity Science Team Physical Oceanography | 41
26 | 15
12 | 46% | Earth Science
Earth Science | | initial selections 10/17/08 two more made 3/13 | | | SMAP Science Definition Team
Terrestrial Ecology
Geospace Science | 44
77
96 | 14
20
26 | 32%
26%
27% | Earth Science
Earth Science
Heliophysics | 146 | Results for subelements 18.2 (Decadal Survey Mission Preparation and Scoping Studies) only 9 selected Avg new award in program year 1: LCAS = 483 K: IDP = 102 K and Reg = 119 K | | | Guest Investigator Studies with C/NOFS Helicophysics Guest Investigators Program (Geospace) Helicophysics Guest Investigators Program (S&H only) | 62
70 | 5
15
26 | 23%
24%
37% | Heliophysics
Heliophysics
Heliophysics | 115
104 | | | 2008 | Living Wift a Star Targeted Research and Technology Living Wift a Star Targeted Research and Technology: Strategic Capability Solar and Heliosoberic Physics | 105
4
131 | 34
2
35 | 32%
50% | Heliophysics
Heliophysics
Heliophysics | | Avo new award in program year 1: LCAS = 621 K: IDP = 133 K and Reg = 115 K | | 2008 | Solar Dynamics Observatory Science Center Astrobiology Science and Technology Instrument Development (ASTID) Astrobiology: Exabiology and Evolutionary Biology | 8
72 | 2
8
28 | 25%
11% | Heliophysics
Planetary Science
Planetary Science | 700
250
136 | 5 years each at 700 K/year | | 2008 | Cassini Data Analysis Concept Studies for Human Tended Suborbital Science | 61 | 22 | 36%
6% | Planetary Science
Planetary Science | 96
49
153 | 2 additional selections made in June 2009 | | | Cosmochemistry Jupiter Data Analysis Lunar Advanced Science and Exploration Research Lunar and Planetary Science U.S. Participating Investigator (SALMON H1) | 40
27 | 14
11 | 46%
35%
41% | Planetary Science
Planetary Science
Planetary Science | 101 | 5 selected doesn't inclue one in the selectable category. Grant sizes range from 50-259 K | | 2008 | Mars Data Analysis Mars Fundamental Research (MERP) | 17
88
94 | 32
21 | 29%
36%
22% | Planetary Science
Planetary Science
Planetary Science | 86
109 | Additional selection 8/12/09 | | 2008 | Moon and Mars Analog Mission Activities (IMMAMA) Near Earth Object Observations (NEOO) Digins of Solar Systems (Planetary) Duter Planets Research | 38
15
73 | 11
5
19 | 29%
33%
26% | Planetary Science
Planetary Science
Planetary Science | 325
101 | Plus two partial selections PSD only | | 2008 | Planetary Astronomy (PAS1) | 110
46
81
114 | 24
18
32 | 22%
39%
40% | Planetary Science
Planetary Science | 112 | Additional selections were made in Sect 09 and again in Nov. Some selectables may remain. 110 2 additional selections made in early Feb 2009 2 additional selections made in june 2009 | | | Planetary Almosoheres (PATM) Planetary Cedeov and Geophysics (PGG) Planetary Institument Definition and Development Planetary Mission Data Analysis Planetary Mission Research | 114
95
28 | 30
16
11 | 26%
17%
39% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 116 | 2 additional selections made in June 2009 New awards in 2009 range from less than 50 to over 200 K | | | | 5
28
100 | 2
15
49 | 40%
54%
49% | Planetary Science
Planetary Science
Astrophysics | 120
245 | | | | Astrophysics Data Analysis Astrophysics Research and Analysis Astrophysics Statedic Mission Concept Studies Astrophysics Theory Program | 151
43
184 | 41
19
37 | 44% | Astrophysics
Astrophysics
Astrophysics
Astrophysics | 680
112 | Approximate, \$12 million total in FY 08 and 09, grants from \$250,000 to \$1 million | | 2007
2007 | Astrochysics Theory Program FUSE Guest Investigator Cycle 9 FUSE Legacy Science Program SUSE Legacy Science Program | Cancelled
Cancelled
100 | Cancelled
Cancelled
35 | Cancelled | Astrophysics
Astrophysics
Astrophysics | | Cancelled Cancelled | | 2007 | SALEX Guest Investigator - Cycle 4 SLAST Cycle 1 Keoler Participating Scientists Suzaku Guest Observer - Cycle 3 | 167
37
120 | 44
8
79 | 26%
22% | Astrophysics
Astrophysics
Astrophysics | | | | 2007 | Swift Guest Investigator - Cycle 4 Applied Information Systems Research Origins of Solar Systems | 144
Deferred
104 | 49
Deferred | 34% | Astrophysics
Cross division
Cross division | 87 | Deferred | | 2007 | Accelerating Operational Use of Research Data ACCESS Advancing Collaborative Connections for Earth System Science | 16
31
35 | 6 10 5 | 38%
32% | Earth Science Earth Science Earth Science | | budoets being negotiated
two year awards | | 2007 | Authorne Instrument Lechnology Transition Atmospheric Composition: Aura Science Team Atmospheric Composition: Science Advisory Group for the Glory Science Mission Carbon Cycle Science | 76
12
113 | 39
12
35 | 51%
100% | Earth Science Earth Science Earth Science Earth Science | 42 | Selected 7/13/07 The average 3-year grant size is \$734K (year by year averages: Yr1-\$245K, Yr2-\$252K, Yr3-\$236K). The | | 2007 | Cruospheric Science
Decision Support through Earth Science Research Results | 54
120 | 20
33 | 37%
28% | Earth Science
Earth Science | | The average 3-year grant size is \$734K (year by year averages: YF1-\$249K, Yf2-\$250K, Yf3-\$250K). The
Budgets under negotiation. It is currently estimated that total funding for the selected investigations will total. | | 2007
2007
2007 | earth Surface and Intenor Earth Scope: The InSAR and Geodetic Imaging Component Instrument Incubator Program | 58
20
78
77 | 21
12
21 | 36%
60%
27% | Earth Science Earth Science Earth Science Earth Science | 1049 | 6 Million total over the life of the awards | | 2007
2007
2007 | Land-CoveriLand-Use Chance NASA Energy and Water Cycle Study New /Early Career) Investigator Program in Earth Science | 77
48
78 | 17
10
18 | 21%
23% | Earth Science
Earth Science | | | | 2007
2007
2007 | Deean Biology and Biogeochemistry Deean Surface Topography Science Team Physical Oceanography | 60
37 | 27
11 | 45%
30% | Earth Science
Earth Science | | | | 2007 | Space Archaeology
Terrestrial Ecology
Terrestrial Hydrology | 17
59
49 | 7
10
9 | 41%
17%
18% | Earth Science
Earth Science
Earth Science | | 265 total over the duration of the grant | | 2007 | Troposphenc Chemistry: Arctic Research of the Composition of the Troposphere to
Wind Lidar Science
Seospace Science | 73
13
85 | 41
5
32 | 56%
38% | Earth Science
Earth Science
Heliophysics | 150
158 | Avo new award in program year 1 for Geospace SR&t is 158 but it breaks out as follows: LCAS = 448 K: IDP | | 2007 | Heliophysics Guest Investigators Program (Geospace) | 64
80
25 | 20
29
10 | 36% | Heliophysics
Heliophysics
Heliophysics | 120
121
431 | Ava new award in program wear 1 for Geospace SR&I is 158 but it breaks out as follows: LCAS = 448 K.IDP
This number is approximate. Average was 116 to 784 portion (not Geospace)
solar only.
The averages of awards for PY2009 and 2010 are \$436K. | | 2007
2007
2007 | Helicohysics Theory Living With a Star Space Environment Testbeds Living With a Star Starce Environment Testbeds Living With a Star Targeted Research and Technology Living with a Star Targeted Research and Technology. Strategic Capability |
Cancelled
163
Deferred | Cancelled
51
Deferred | Cancelled
31% | Heliophysics
Heliophysics | 110 | Cancelled Deferred | | 2007 | Solar and Heliospheric Physics Virtual Observatories for Heliophysics Data | 28 | 28
18
7 | 36%
64% | Heliophysics
Heliophysics | 94 | Avo new award in program year 1 for SHP SR&T is 191 but it breaks out as follows: LCAS = 490 K: IDP =
Approved amounts were \$1,695k, \$1,537k & \$1,267k in FY9, 10, & 11 respectively. | | 2007 | Astrobiology Science and Technology for Exploring Planets (ASTEP) Astrobiology Science and Technology Instrument Development (ASTID) Astrobiology: Expibiology and Evolutionary Biology Capetin Part Anglorie Capetin Part Anglorie | 54
97
113 | 17
33
41 | | Planetary Science
Planetary Science
Planetary Science | 167 | but the average clanned per year awarded amount integrated over all four years is ~ 120 K. Average Duration of Awards: 3.25 years Avo of 471 K total if funded for all three years as budgeted. | | | Cassini Data Analysis Cosmochemistry Discovery and Scout Mission Capabilities Expansion Discovery Data Analysis | 58
40
30 | 27
9
15 | 47%
23%
50% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 260 | Does not include PME, \$4.151 M in new awards, \$14.4 M total awarded in 2007 Program officer notes that \$2,051,942 was total for an average of \$136,796 per award. "This is a little high | | | Discovery Data Analysis Fellowshios for Early Career Researchers Fellowshios for Early Career Researchers IPO Participating Scientists | 56 | 24 | | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 76 | Trogram critical trials \$4,001,542, was total for an artirage of \$100,150 per tartals. This is a macing in | | | RO Participating Scientists Lunar Advanced Science and Exploration Research Mars Data Analysis Mars Endangeral Research (MEDD) | 162
78
101 | 43
33
40 | 27%
42% | Planetary Science | 109
96 | 5 address alaction latters want out 3/28/08 | | 2007 | Mars Fundamental Research (MFRP) Mars Instrument Development Project Moon and Mars Analog Mission Activities (IMMAMA) Near Earth Object Observations (NEOO) | 63
21
18 | 7 11 | 11%
52%
17% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | | 5 addni selection letters went our 3/28/08 4 remain selectable. The 7 awards are worth a total of \$9.2M over three years, with an average of \$450,000 364 is the average for all awards old and new | | 2007 | Outer Planets Research Planetary Astronomy (PAST) | 120
61 | 44
34 | 37%
56% | Planetary Science
Planetary Science
Planetary Science | 85 | 304 is use average or all awards on 2/8/2009, binging the total up to 44/120. These were the "geochysics 103 is the average for all awards old and new | | 2007
2007
2007 | Planetary Atmospheres (PATM) Planetary Geoloov and Geophysics (PGG) Planetary Instrument Definition and Development Planetary Protection Research | 120
115
13 | 40
15 | 33%
13% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 97
247 | The start of 2 awards delayed until Year 2 Total value of the selected proposals ~ 2.6 M | | 2007 | Frantian's Projection Residential Samole Return Laboratory Instruments and Data Analysis
Astrophysics Data Analysis
Astrophysics Research and Analysis | 10
99
143 | 7
35 | 70%
35% | Planetary Science
Astrophysics
Astrophysics | 366 | Total value to the semicate proposals = 2.0 m | | 2006
2006 | Astrophysics Research and Analysis Astrophysics Research and Analysis Astrophysics Theory Program Beyond Einstein Foundation Science | 179
118 | 55
20 | 31%
17% | Astrophysics
Astrophysics
Astrophysics | 298
99
135 | There were two versions of this in ROSES-2006 | | 2006
2006 | FUSE Guest Investigator Cvcle 8
GALEX Guest Investigator Cvcle 3 | 56
108
76 | 12
68
32 | 63%
42% | Astrophysics
Astrophysics | 133 | | | 2006 | Oriains of Solar Systems (Astro) Suzaku Guest Observer - Cycle 2 Swift Guest Investigator - Cycle 3 | 20
156
88
160 | 9
81
45 | 52%
51% | Astrophysics
Astrophysics
Astrophysics | 28 | (US Pts only) | | 2006 | Apolied Information Systems Research Conceet Studies for Lunar Sortie Science Occortunities History of Scientific Exploration of Earth and Space | 77
41 | 14
12 | 18%
29% | Cross division
Cross division
Cross division | 100 | | | 2006 | Opportunities in Science Mission Directorate Education and Public Outreach
Advancing Collaborative Connections for Earth System Science (ACCESS)
Atmospheric Composition: Modeling and Analysis | 14
64 | 2 13 | 14%
20% | Cross division
Earth Science
Earth Science | 138 | Selected 10/30/06 The average grant size is: \$137878, \$146822, \$144376, per year for the next three years For ROSES06 | | 2006
2006 | Atmospheric Composition: Research and Modelino-A (Ground Net.)
Atmospheric Composition: Research and Modelino-B
Atmospheric Composition: Tropical Composition. Cloud. and Climate Coupling Ext | 19
51
79 | 6
20
56
125 | 32%
39%
71% | Earth Science
Earth Science
Earth Science | 833
214 | Selected 12/8/06 Selected 2/7/07. First year funding | | 2006
2006
2006 | Earth Svistem Science Research using Data and Products from TERRA, AQUA an
SNSS Remote Sensing Science Team
Interdisciplinary Research in Earth Science | 322
18
127 | 125
7
33 | 39% | Earth Science
Earth Science
Earth Science | 200 | approximate Selected 12/8/06 | | 2006
2006
2006 | international Polar Year
International Polar Year Education and Public Outreach
Making Earth System data records for Use in Research Environment | 93
24
86 | 34
9
29 | 37%
38%
34% | Earth Science
Earth Science | 176 | Selected 5/17/07
Selected 5/17/07. Second year funding | | 2006
2006 | Deean Biology and Biogeochemistry Precipitation Science Recompetition of the GRACE Science Team | 28
127
32 | 12
55
22 | 43%
69% | Earth Science
Earth Science
Earth Science | 183
145
136 | Selected 6/4/07
Selected 10/30/06 | | 2006 | Seosoace Science Heliophysics Guest Investigators Heliophysics Guest Investigators International Heliophysical Year Research | 94
92
96 | 24
26
25 | 26% | Heliophysics
Heliophysics
Heliophysics | | geospace only solar only | | | International Helicohvaical Year Research Living With a Star Targeted Research and Technology Living with a Star Targeted Research and Technology: Strategic Capability Solar and Heliospheric Physics | 29
150
7 | 9
42
1 | 14% | Heliophysics
Heliophysics
Heliophysics | | | | 2006 | Virtual Observatories for Heliophysics Data Astrobiology, Exphiology and Explutionary Biology | 118
33
103 | 33
13
23 | 28%
39%
22% | Heliophysics
Planetary Science | 82
117 | 82 is approximate. Approved amounts were 1.069k in FY 08 \$ 396k in FY 09 and \$ 358k in FY 10 | | 2006 | Cassini Data Analysis | 71
75
41 | 27
36
24 | 38%
48%
59% | Planetary Science
Planetary Science | 95
127
92 | | | | Discovery Data Analysis Mars Data Analysis Mars Fundamental Research (MFRP) Mars Reconnaissance Orbitet Participating Scientists | 100
126
71 | 23
35
17 | 23%
28%
24% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 83
89
42 | | | 2006 | Mars Reconnaissance Orbiter Participating Scientists MESSENGER Mission Participating Scientists Near Earth Object Observations (NEOO) Origins of Solar Systems (Planetary) | 52
14
73 | 23
5
25 | 44% | Planetary Science
Planetary Science
Planetary Science | 50
344
62 | | | 2006
2006
2006 | Outer Planets Research Planetary Astronomy (PAST) Planetary Annoscheres (PATM) | 51
52
63 | 13
19
21 | 25%
37%
33% | Planetary Science
Planetary Science
Planetary Science | 98
79
108 | | | 2006
2006 | Planetary Geology and Geophysics (PGG) Planetary Instrument Definition and Development Planetary Instrument Definition and Development | 99
104
22 | 48
18
4 | 33%
48%
17%
18% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 108
67
231
130 | | | 2006 | Planetary Protection Research
Samole Return Laboratory Instruments and Data Analysis
Stardust Samole Analysis
Astro E2/Suzaku Guest Observer – Cycle 1 Resolicitation | 18
30
158 | 6
22 | 33%
73% | Planetary Science
Planetary Science
Planetary Science
Astrophysics | 130
472
107 | | | 2005
2005 | Astrophysics Research and Analysis
Astrophysics Theory Program | 160
128 | 45
20 | 28%
16% | Astrophysics
Astrophysics | 89 | | | 2005 | Bevond Einstein Foundation Science Concept Studies for the Joint Dark Energy Mission FUSE Guest Investigator — Cycle 7 | 54
6
81
64 | 6
3
49
25 | 50%
60% | Astrophysics
Astrophysics | 118 | | | 2005
2005
2005 | GALEX Guest Investigator — Cvcle 2 Rossi X-ray Timing Explorer Guest Observer — Cycle 11 Swift Guest Investigator — Cvcle 2 | 64
131
67 | 25
59
33 | 45%
49% | Astrophysics
Astrophysics
Astrophysics | | | | 2005 | Terrestrial Planet Finder / Foundation Science
Terrestrial Planet Finder Coronagraph / Instrument Concept Studies
Applied Information Systems Research | 25
13
174
100 | 5
33 | 38%
19% | Astrophysics
Astrophysics
Cross division | | | | 2005
2005
2005 | Interdisciptinary Exploration Science Origins of Solar Systems Advanced Component Technology | 100
98
92 | 3
31
14 | 3%
32%
15% | Cross division
Cross division
Earth Science | 66 | | | | Advanced Information Systems Technology Advancian
Collaborative Connections for Earth-Sun System Science Atmospheric Composition- A (Ozone Monitorina Instrument: OMI) Atmospheric Composition- B (Kinetics) | 99
50
12 | 28
16
8 | 32%
67% | Earth Science
Earth Science
Earth Science | 194
113 | Selected 8/21/06
Selected 10/14/05
Selected 3/31/06 | | 2005 | Atmospheric Composition- C
CloudSat and CALIPSO Science Team and Modeling/Analysis of A-Train Related I | 23
67
120 | 16
30
40 | 70%
45%
33% | Earth Science
Earth Science | 188
110
150 | Selected 11/14/05
Selected 3/31/06
Selected 5/22/07 | | 2005 | Decision Support through Earth-Sun Science Research Results Earth Surface and Interior | 94
71
71 | 33
35
19 | 49% | Earth Science
Earth Science
Earth Science | N/A
86 | Selected 4/7/06
Selected 8/1/07
Selected 4/17/06 | | 2005
2005 | coc Cloud and Land Elevation Satellite (ICESat) and Cryosat Land Cover/Land Use Change (LCLUC) Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) | 83
37 | 14
22 | 27%
17%
59% | Earth Science
Earth Science | 143
286 | Selected 4/17/06 Selected 1/14/06. 83 Step-2 proposals were submitted, there were 173 Step-1. Selected 9/1/05 | Page 8 of 9 | 2005 | NASA African Monsoon Multidisciplinary Activities (NAMMA) | 49 | 23 | 47% | Earth Science | 96 | Selected 3/31/06. The award amount is the average over 3 years Jack Kave notes higher at start, then | |--------------|---|------------|-----------|-------------------|--|------------|--| | 2005 | NASA Energy and Water Cycle Study (NEWS) New (Early Career) Investigator Program in Earth Science | 50
84 | 5
25 | 10% | Earth Science
Earth Science | 200 | Selected 12/29/06
Selected 5/8/06 | | 2005 | North American Carbon Program | 79 | 12 | 15% | Earth Science | 225 | Selected 6/29/06. | | 2005 | Ocean Biology and Biogeochemistry Ocean Vector Winds Science Team | 57
57 | 22 | 32%
39% | Earth Science
Earth Science | 243 | Selected 4/7/06
Selected 4/4/06 | | 2005 | Remote Sensing Science for Carbon and Climate Terrestrial Ecology and Biodiversity | 44
34 | 10 | 23% | Earth Science
Earth Science | 180 | Selected 4/4/06
Selected 4/17/06 | | 2005 | Terrestrial Hydrology | 59 | 12 | 20% | Earth Science | 125 | Selected 5/1/07 | | | Geospace Science Living With a Star Targeted Research and Technology | 156
163 | 27
51 | 17%
31% | Heliophysics
Heliophysics | | | | 2005 | Living With a Star Targeted Research and Technology: NASA/NSF Partnership for | 18
18 | 6 | 33% | Heliophysics | | | | 2005 | Magnetospheric Multiscale Mission Interdisciplinary Science Teams
Solar and Heliospheric Physics | 150 | 18 | 12% | Heliophysics
Heliophysics | | | | 2005 | Virtual Observatories for Solar and Space Physics Data | 17
24 | 11
16 | 65% | Heliophysics | 48 | Funds sent out in FY 08 & 09 were \$1.952k & \$1.376k respectively | | 2005 | 2001 Mars Odyssev Participating Scientists Astrobiology Science and Technology for Exploring Planets (ASTEP) | 88 | 0 | | Planetary Science | | | | 2005 | Astrobiology Science and Technology Instrument Development (ASTID) Astrobiology: Exobiology and Evolutionary Biology | 88
160 | 0
28 | 0%
18% | Planetary Science
Planetary Science | N/A
133 | | | 2005
2005 | Cosmochemistry Discovery Data Analysis | 84 | 43
14 | 51%
67% | Planetary Science
Planetary Science | 130 | | | 2005 | Mars Data Analysis | 21
96 | 27 | | Planetary Science | 67 | | | 2005 | Mars Exploration Rovers (MER) Participating Scientists Mars Fundamental Research (MFRP) | 120 | 37 | 23%
31% | Planetary Science
Planetary Science | 90
80 | | | 2005 | Near Earth Object Observations (NEOO) Outer Planets Research | 10
81 | 5 | | Planetary Science | 257
81 | | | 2005 | Planetary Astronomy (PAST) | 38 | 23 | 61% | Planetary Science | 89 | | | 2005 | Planetary Atmospheres (PATM) Planetary Geology and Geophysics (PGG) | 84
121 | 29
58 | 35%
48% | Planetary Science
Planetary Science | 104
67 | | | 2005 | Planetary Instrument Definition and Development Planetary Protection Research | 100
11 | 10 | 10% | Planetary Science | 234
130 | | | 2005 | Sample Return Laboratory Instruments and Data Analysis | 12 | 6 | 50% | Planetary Science | 266 | | | | Astrophysics Data Analysis Astrophysics Research and Analysis | 84
163 | 23
69 | 27%
42% | Astrophysics
Astrophysics | | | | 2004 | Astrophysics Theory Program | 111
69 | 22 | 20% | Astrophysics | 103
117 | | | 2004 | Beyond Einstein Foundation Science
FUSE Guest Investigator - Cycle 6 | 143 | 45 | 23%
31% | Astrophysics
Astrophysics | 117 | | | | GALEX Guest Investigator Cycle 1
INTEGRAL | 101 | 53 | | Astrophysics
Astrophysics | | | | | Long-Term Space Astrophysics | 88 | 19 | 22% | Astrophysics | | | | 2004 | Origins Science Mission Concept Studies
RXTE Guest Investigator - Cycle 10 | 26
150 | 9
69 | | Astrophysics
Astrophysics | | | | 2004 | Terrestrial Planet Finder Foundation Science
New Millennium Space Technology 9 | 15 | 4 | 27%
30% | Astrophysics
Cross division | | | | 2004 | New Millennium Space Technology 9 Carbon Cycle Science EARTH SCIENCE OUTREACH INVESTIGATOR AWARDS | 303 | 59 | 19% | Earth Science | | | | 2004 | INSPIRING THE NEXT GENERATION OF FARTH EXPLORERS: INTEGRATED SE | 24
146 | 33 | 8%
23% | Earth Science
Earth Science | | | | 2004 | Instrument Incubator Program | 83
225 | 23
65 | 28% | Earth Science
Earth Science | | | | 2004 | Modeling, Analysis and Prediction Climate Variability and Change
NASA Energy & Water Cycle Step-2 | 196 | 33 | 17% | Earth Science | | | | 2004 | Oceans & Ice
Tropical Cloud Systems and Processes | 293
198 | 53
25 | 18%
13% | Earth Science
Earth Science | | | | 2004 | Geospace Science | 121 | 41 | 34% | Heliophysics | | | | 2004 | Living With a Star Targeted Research and Technology
SEC Guest Investigator | 172 | 49
64 | 33%
37% | Heliophysics
Heliophysics | | | | 2004 | SEC Theory Solar and Heliospheric Physics | 26
150 | 9
51 | 35%
34% | Heliophysics
Heliophysics | | | | 2004 | Astrobiology Science and Technology for Exploring Planets (ASTEP) | 39
91 | 6 | 23% | Planetary Science | 682 | | | 2004 | Astrobiology Science and Technology Instrument Development (ASTID) Astrobiology: Exobiology and Evolutionary Biology | 91
130 | 9
51 | 10%
39% | Planetary Science
Planetary Science | 296
134 | | | 2004 | Cosmochemistry Critical Issues in Electric Propulsion | 69 | 51
36 | | Planetary Science
Planetary Science | 121 | | | 2004 | Discovery Data Analysis | 15 | 12 | 80% | Planetary Science | | | | 2004 | Hyabusa Participating Scientists
In-Space Propulsion - Cycle 3 | 3
12 | 1 | 33%
8% | Planetary Science
Planetary | 44
600 | | | 2004 | Mars Data Analysis | 108 | 45 | 42% | Planetary Science | 69 | | | 2004 | Mars Fundamental Research (MFRP) Near Earth Object Observations (NEOO) | 6 | 5 | 83% | Planetary Science
Planetary Science | 75
317 | | | 2004 | Origins of Solar Systems (Planetary) Outer Planets Research | 92
166 | 39
54 | 42%
33% | Planetary Science
Planetary Science | 69
87 | | | 2004 | Planetary Astronomy (PAST) Planetary Atmospheres (PATM) | 41
75 | 29
43 | 71% | Planetary Science | 74
85 | | | 2004 | Planetary Geology and Geophysics (PGG) | 117 | 73 | 62% | Planetary Science | 87 | | | 2004 | Planetary Instrument Definition and Development Planetary Protection Research | 66
10 | 11 | 17%
40% | Planetary Science
Planetary Science | 201 | | | 2004 | Sample Return Laboratory Instruments and Data Analysis | 17
24 | 7
18 | 41% | Planetary Science | 289 | | | 2004 | Stardust Participating Scientists Venus Express | 13 | 9 | 69% | Planetary Science
Planetary Science | 67 | | | 2003 | Astrophysics Data Analysis Astrophysics Research and Analysis | 111 | 31
51 | 28%
38% | Astrophysics
Astrophysics | | | | 2003 | Astroniviscs Theory Program Einstein Probes | 133 | 32
10 | | Astrophysics | | | | 2003 | FUSE Guest Investigator - Cycle 5 | 168 | 62 | 37% | Astrophysics
Astrophysics | | | | 2003 | Long Term Astrophysics
Swift Guest Investigator - Cycle 1 | 94
63 | 17
35 | 18%
56% | Astrophysics
Astrophysics | | | | 2003 | Terrestrial Planet Finder | 45 | 16 | | Astrophysics | | | | | Space Science Vision Missions Earth System Science Research using Data and Products from TERRA, AQUA an | 27
566 | 15
199 | | Cross division
Earth Science | | | | 2003 | Interdisciplinary Science in the NASA Earth Science Enterprise New (Early Career) Investigator Program in Earth Science | 346
126 | 60
31 | 17%
25% | Earth Science | | | | 2003 | The Ocean Surface Topography Science Team (OST/ST) | 80 | 43 | 54% | Earth Science | | | | 2003 | Advanced Information Systems Research
Geospace Sciences LCAS | 123
27 | 33
11 | 41% | Heliophysics
Heliophysics | | | | 2003 | Geospace Sciences SR&T
Living With a Star Targeted Research and Technology | 95
187 | 24
52 | 25% | Heliophysics
Heliophysics | | | | 2003 | SEC Guest Investigators | 82 | 33 | 40% | Heliophysics | | | | 2003 | Solar and Heliospheric Physics
Advanced Electric Propulsion | 119
9 | 25
2 | 21%
22% | Heliophysics
Planetary Science | - | | | 2003 | Astrobiology Science and Technology for Exploring Planets (ASTEP) | 35
47 | 10 | 29% | Planetary Science | | | | 2003 | Astrobiology Science and Technology Instrument Development (ASTID) Astrobiology: Expbiology and Evolutionary Biology | 105 | 20
44 | 42% | Planetary Science
Planetary
Science | | | | | Cosmochemistry Discovery Data Analysis | 66
25 | 36
16 | 55% | Planetary Science
Planetary Science | 140 | | | 2003 | High Capability Instruments for Planetary Exploration | 29
85 | 11
37 | 38% | Planetary Science | | | | 2003 | Mars Data Analysis Mars Exploration Advanced Technologies | 131 | 60 | 44%
46%
47% | Planetary Science
Planetary Science | | | | 2003 | Near Earth Object Observations (NEOO) Origins of Solar Systems (Planetary) | 15
85 | 7 | 47% | Planetary Science
Planetary Science | | | | 2003 | Planetary Astronomy (PAST) | 65 | 30 | 46% | Planetary Science | | | | 2003 | Planetary Atmospheres (PATM)
Planetary Data System Nodes NRA | 80
7 | 5 | 55%
71% | Planetary Science
Planetary Science | | | | 2003 | Planetary Geology and Geophysics (PGG) | 115
58 | 62
15 | 54%
26% | Planetary Science
Planetary Science | | | | 2003 | Planetary Instrument Definition and Development
Planetary Protection Research | 10 | 2 | 20% | Planetary Science | | | | 2003 | Sample Return Laboratory Instruments and Data Analysis | 21 | 9 | 43% | Planetary Science | | ı |