Conformal PICA TPS – Enabling Future NASA Planetary Science Missions

Initial development of Conformal Phenolic Impregnated Carbon Ablator (C-PICA) ablative TPS occurred under NASA's Hypersonics Project in the 2000's and demonstrated very low through-the-thickness thermal conductivity compared to state-of-the-art Phenolic Impregnated Carbon Ablator (PICA). PICA, which was first demonstrated on Stardust, has some inherent limitations that C-PICA improves on, primarily strain to failure. More recently C-PICA has been further matured and a family of C-PICA materials are now ready for consideration as an enabling technology for New Frontiers and other NASA missions. C-PICA has several improvements compared to PICA including:

• Higher strain to failure and lower thermal conductivity (up to 55% less than PICA depending on C-PICA variant)

•CTE comparable to typical composite carrier structures and also suitable for metallic substructures given high strain to failure • Temperature independent mechanical properties

• Suited for single piece (up to ~ 1.5m) or tiled configurations

Larger tiles leading to reduced integration complexity compared to tiled PICA

Reduced mass compared to PICA due to reduced thermal conductivity

C-PICA has been tested at heat fluxes ranging from 250-1850 W/cm², and shear pressures of 200Pa at 400W/cm² with excellent performance. Expertise on manufacturing and integration of C-PICA reside at NASA, and NASA can transition the technology to interested parties via technology transfer.

Conformal Phenolic Impregnated Carbon Ablator (Conformal PICA)

"Low" Density < 0.3 g/cm³

Conformal PICA With and without Seam

Loose Carbon Fibers

4-point bend tests

Felt Scale-up successful for thick C-PICA 4" Rayon Felt yields ~3" Carbon Felt

State of the art for carbon felt in 2015 ~1.0-in thick: while material performed well felt thickness not sufficient for all applications

Recent demonstration of thick felts (~4-inch) demonstrated - enabling C-PICA to be demonstrated at flight relevant thicknesses

C-PICA has similar recession and much lower thermal penetration than PICA Flank heating ~400 W/cm², 30 s, Shear ~200 Pa on flank, ~500 Pa at shoulder

Seam Evaluation Test Model Standard Thermal Response Test Model Standard PICA $\Delta T = 318 C$

Run 1, PICA plug data FIAT (nominal)

----- FIAT (90%)

0 20 40 60

Thermal Response

Analysis Model Developed

2021 era instrumented thermal response models used to develop material model for TPS sizing

SPRITE model geometry allows assessment of a range of conditions and rapid evaluation of material capability including material compositions and seam designs (Flank heating ~400 W/cm², shear ~ 200Pa on

partnership with ARA

All seams were well behaved, even 90° butt joints between test segments

flank and ~500Pa on shoulder

	Saturn Probe
Venus In Situ Lunar Sample	
Return	
Mars Sample Return	Uranus Probe
	Neptune Probe

Outer Planets		
	Mission Abstract	Comment/Application
•	New Frontiers Titan Orbiter	Aerocapture requires a mass efficient TPS suite - Conformal PICA is very suitable
-	Small Next-Generation Atmospheric Probe (SNAP) For Ice Giant Missions	Conformal PICA for backshell TPS
3	Uranus Orbiter and Probe (UOP)	Conformal PICA for backshell TPS
ŀ	Saturn Probe	Conformal PICA for backshell TPS
Venus		
	Mission Abstract	Comment/Application
5	SAEVe: Seismic and Atmospheric Exploration of Venus	Conformal PICA for backshell TPS
5	V-BOSS: Venus Bridge Orbiter and Surface System	Conformal PICA for backshell TPS
,	Venus In Situ Explorer (VISE)	Conformal PICA for backshell TPS
3	Cupid's Boomerang	Conformal PICA for backshell TPS
Small Body Sample Return		
	Mission Abstract	Comment/Application
)	Ceres Sample Return	Conformal PICA is an alternate to PICA forebody TPS with improved mass efficiency
D	Comet surface sample return (CSSR)	Conformal PICA is an alternate to PICA forebody TPS with improved mass efficiency