Euclid Update

Michael Seiffert
JPL
NASA Euclid Project Scientist

Doris Daou
NASA HQ
NASA Euclid Program Scientist

On behalf of the NASA project and the Euclid Consortium
Euclid – mapping the geometry of the dark universe

A space-based survey telescope led by the European Space Agency (ESA) and the Euclid Consortium with contributions from NASA.

First space mission dedicated to the study of dark energy.

Measurements include the Dark Energy equation of state, $w(a)$, the growth of structure parameter, γ, the neutrino mass, m_ν, and the universe’s initial conditions f_{NL}.

Three NASA-provided elements:

- Hardware contribution to near-IR instrument
- Euclid NASA Science Center at IPAC (ENSCI)
- 3 Science teams selected through peer review:
 - Constraining Dark Energy and Gravity with Euclid (PI J. Rhodes, JPL)
 - Looking at Infrared Background Radiation Anisotropies with Euclid (PI A. Kashlinsky, GSFC)
 - Precision Studies of Galaxy Growth & Cosmology Enabled Through a Physical Model for Nebular Emission (PI R. Chary, Caltech)
Euclid – Telescope and Instruments

Telescope:
1.2 meter primary diameter
Silicon Carbide 3-mirror Korsch anastigmat

Two Instruments:
VIS – wide band visible imaging array instrument
NISP – near-IR spectrometer and photometer
Euclid – Visible Instrument (VIS)

Focal Plane Array (FPA) 6 x 6 array
- 4096 x 4132 pixel Teledyne e2v Si CCDs
- 0.1 arcsec/pixel
- 0.53–0.92 μm wide-band imaging

Thermal Isolation Layer
- CCD/FPA = (153 ± 7) K
- ROE = (270 ± 20) K

Read Out Electronics (ROE)
- Signal amplifier & Analog to Digital Converter (ADC)
- FPGA for CCD operation

FPA with Perspex cover on top of CCDs for protection
Image: M. Cropper et al. The Euclid Visible Camera VIS (in prep.)
Euclid – Near-infrared Spectrometer and Photometer

- 16 x 2048 x 2048 pixel 2.3 um cutoff Teledyne HgCdTe arrays
- SIDECAR ASIC detector readout
- 0.3 arcsec/pixel
- 0.95–2.02 μm Y/J/H-band imaging
- R > 400 slitless spectroscopy

NASA flight hardware consists of 16 flight units (+ 4 flight spares) of:
- Detectors
- Readout electronics
- Cryogenic cables

JPL led, with GSFC testing support

NISP flight model before being wrapped in Multi-Layer Insulation (MLI).

Image credit: Euclid Consortium & NISP instrument team
Euclid was launched on July 1, 2023 from Cape Canaveral, FL on a SpaceX Falcon 9.

Early observations showed that Euclid's spacecraft and systems, the telescope and scientific instruments were performing well (images at lower right).

A few areas of concern have been identified and mitigated:

- Unexpected straylight at specific spacecraft orientations
- Occasional X-rays from solar flares contaminates some VIS images
- Occasional loss of fine guidance tracking
Euclid Straylight

Initial measurements showed excessive solar straylight in VIS at some of the nominal survey spacecraft orientations. NISP unaffected.

To mitigate this, we have altered the range of solar orientations Euclid will operate at during its survey. Euclid’s survey strategy has been re-optimized, at a slight penalty to overall survey efficiency.
Solar x-ray flare contamination

Due to insufficient shielding, x-rays from solar flares contaminate some VIS exposures. (NISP unaffected).

Affected pixels are flagged and masked from use in science analysis.
Interruption in Guiding Tracking

There was initial, intermittent loss of reliable guiding information from Fine Guidance System (FGS).

Root cause traced to FGS software. Regions with low stellar density suffered confusion with cosmic rays. Automated rejection of poor pointing solutions was not performing as expected.

The spacecraft commissioning phase was extended, the FGS software was updated and tested on-orbit. The system is now performing well.

FGS sensors consist of 4 CCDs adjacent to VIS focal plane

Image: M. Cropper et al. (in prep.)
Euclid Early Release Observations

The first science images from Euclid were released in a press event on November 7, 2023. Public data release expected May 23, 2024.

Intent is to highlight Euclid’s capabilities. Communications and Outreach merit took precedence over scientific merit.

Each target is one standard observing block of 70 minutes covering one FOV of ~ 0.7 x 0.7 deg, with exception of Perseus (4 blocks).

Both imaging data and spectroscopy data were taken. For the EROs, only the imaging data has been fully processed.

Image credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

https://www.esa.int/Science_Exploration/Space_Science/Euclid/Euclid_s_first_images_the_dazzling_edge_of_darkness
Euclid Data release timeline

Recent Milestones:
- Mission Commissioning Results Review successfully concluded Feb 8, 2024
- Euclid’s Science Survey started on Feb. 14, 2024

Coming milestones:
- May 2024: Public Release of ERO data
 - Initial science and instrument publications
 - Media briefing @ ESAC
- March 2025: Q1 public data release
 - ~ 50 deg^2 of survey data
 - single visit over Euclid Deep fields
- June 2026: DR1 public data release
 - ~ 2000 deg^2
 - 1st year of wide survey data

Credit: ESA/Euclid/Euclid Consortium/NASA/Planck Collaboration/A. Mellinger
Euclid NASA Science Center at IPAC (ENSCI) supports the US Research Community

Contact with research community:
• Conferences/AAS and Workshops
• Special session at Jan 2024 AAS, planning for 2025
• User Panel (started 1 year before launch)
• User Survey planned before first data release
• Push info to community: newsletters, social media, planning opt-in mailing list

Web presence:
• Help desk (ensci-support@ipac.caltech.edu)
• Mission news and FAQ
• Documents and (planned) tutorials
• Recent document on expected data products
• Advertise data releases and research opportunities

Support US archival research with Euclid:
• Work with NASA/IPAC Infrared Science Archive (IRSA) to design, validate, enhance the complementary US archive
• Data tools and documentation
• Data Analysis workshops after data releases

Support for US Science Teams:
• Meetings, developer advice; calibration docs/files

ENSCI prioritizes US, but open to all:
• European researchers will have access to mission knowledge from national centers

IPAC/ENSCI director: George Helou
ENSCI science/task lead: Harry Teplitz

ENSCI website
NNH24ZDA001N-EUCLID

EGIP solicits research on the analysis of data from the Euclid mission due to be in the public domain by the time the proposed project is funded.

EGIP solicits proposals on development of data analysis techniques.

Investigators will be required to make software or other resources supporting such new analysis techniques publicly available.

- Early Release Observations
- Quick Release 1

Image credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi
Conclusion

After an extended commissioning period, Euclid is performing well and the main survey has started!

Data release in May 2024 will include papers covering the performance of the mission.

The NASA Euclid project office is facilitating a series of “Lessons Learned” meetings between ESA and NASA projects.

Optics: Stray light, on-orbit calibrations (NISP), impact of ice deposition, when to decontaminate, thermal stability

Operations: FGS, flight calibration of dispersive elements, scheduling considerations (calibrations vs survey), micrometeorites, and any comments ESA may have on data processing considerations

NISP detectors: evolution of performance, persistence, snowballs, operability

Recommendation: have next Euclid update focus on pipeline status, data products and tools.