



Janet Barzilla 23 Feb 2024

### SRAG Gaps/Needs for Artemis





### Artemis Responsibilities

- SRAG is tasked with mitigating crew exposure to space radiation
- During Artemis, vehicle mostly travels in free space, exposing crew to the full impact of enhancements due to SPEs (EVA) / ESPEs (IVA/EVA)
- SRAG has worked to improve our capability to monitor and react to changes in the space environment through the following
  - Understanding health effects
  - Vehicle design
  - Active crew and area monitoring
  - Space weather forecasting
- Gaps in our current technology have been identified focus on understanding of SPEs and implications for other areas





### Where are We?

- What are SRAG's current operational needs/gaps for Artemis?
- Are there near-term gaps that would impact the ability to meet requirements for human safety?
- How are high-priority gaps communicated and handled?





### Radiation Protection: Crew Health

| Starport ID | Gap Title                                                                              | Gap Type      | Categorization                  |
|-------------|----------------------------------------------------------------------------------------|---------------|---------------------------------|
| 725         | Probabilistic Risk Models of Crew Health                                               | Knowledge Gap | Near Term Architecture Enabling |
| 1020        | Biomedical Countermeasures to Mitigate Health Effects from Exposure to Space Radiation | Knowledge Gap | Mid Term Architecture Enabling  |
|             | Space Radiation Biomarker Technologies for In-flight Monitoring and Health Management  | Knowledge Gap | Mid Term Architecture Enabling  |

#### Gaps address the needs for

- Reliable risk modeling
- Countermeasures for effects of radiation exposure
- Understanding early indications of pathological changes





### Radiation Protection: Vehicle Design

| Starport ID | Gap Title                                                                                                                             | Gap Type        | Categorization                  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|
| 364         | Radiation shielding - Solar Particle Event (SPE)                                                                                      | Engineering Gap | Near Term Architecture Enabling |
| 1173        | Radiation Shielding: Galactic Cosmic Radiation – Passive Technologies                                                                 | Development Gap | Mid Term Architecture Enabling  |
| 1179        | Radiation Shielding: Combined Galactic Cosmic Radiation (GCR) with protection from Solar Particle Events (SPEs) – Active Technologies | Technology Gap  | Mid Term Architecture Enabling  |

Gaps address the need for improved shielding capabilities for the varied space environment conditions





### Radiation Protection: Monitoring

| Starport ID | Gap Title                                                                                                | Gap Type        | Categorization                  |
|-------------|----------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|
| 733         | Advanced space radiation environment characterization systems: charged and neutral particle spectroscopy | Technology Gap  | Near Term Architecture Enabling |
| 735         | On board dosimetry systems ' charged particle alert and warning                                          | Engineering Gap | Near Term Architecture Enabling |

Gaps address the need for improved monitoring of the space environment





## Radiation Protection: Space Weather Forecasting

| Starport ID | Gap Title                                                                   | Gap Type        | Categorization                  |
|-------------|-----------------------------------------------------------------------------|-----------------|---------------------------------|
| 362         | Solar Particle Events: Radiation models and forecasting                     | Development Gap | Near Term Architecture Enabling |
| 883         | Earth-independent Space Weather Forecast and Crew Alert Systems             | Development Gap | Mid Term Architecture Enabling  |
| 915         | GCR Radiation models and forecasting - Prediction of solar cycle modulation | Knowledge Gap   | Mid Term Architecture Enabling  |

#### Gaps address the need for improved

- Understanding of long-term behavior of the space environment
- Prediction and quantification of short-term changes to the space environment





# Solar Particle Events (SPE): Radiation Models and Forecasting

- Type
  - Near-Term Architecture Enabling
- Description
  - State-of-the-art radiation forecasting allows for relatively reliable prediction of incoming solar particle emission events, but provides poor predictions of duration, intensity, and the intensity-time profile of the entire event.
  - Increased warning times and accuracy of real-time operational forecasting is needed to inform mission operations of radiation hazards following development of the SPE event as well as the prediction of all clear periods.
  - Develop an integrated suite of solar event and flare forecasting models utilizing current sun-Earth observation assets (e.g., GOES, SOHO) with an operational interface to support cis-lunar and lunar surface operations.
  - Evaluate model performance or forecast compared with solar observations post event to validate.
  - Advance models and develop crew interface to utilize on-board space environment observation data (e.g., HERMES on Gateway) to meet Mars mission objectives.





# Solar Particle Events (SPE): Radiation Models and Forecasting

#### Impact

- Without advanced SPE forecasting capability, the hazard will continue to impose operational constraints for astronauts outside of LEO and especially for lunar surface/sortie operations.
- Crew are at increased risk of exposure with the potential for acute health effects if shelter is not reached in a timely fashion, while false-positive predictions will decrease mission efficiency if crew are unnecessarily seeking shelter.

#### Elements

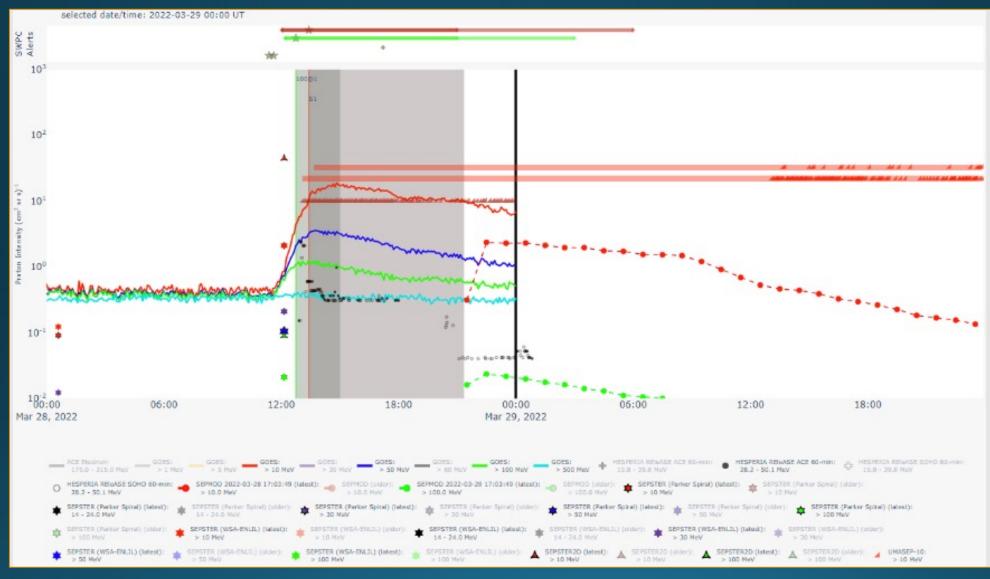
All beyond-LEO human missions





# Solar Particle Events (SPE): Radiation Models and Forecasting

#### Funded Projects


- Develop probabilistic, peak flux, and time profile scoreboards (AES) TRL5
- Assess and integrate new models into scoreboards (AES) TRL5
- Machine Learning/Artificial Intelligent solar event modeling (ESI/STMD) TRL3

#### Gap Closure Activities

- Advance multiple models /methods to predict all-clear periods, probability of occurrence, early warning, peak intensity, and time profile of solar particle events.
- Advance multiple full disk and active region models to predict flare occurrence.
- Develop user interface to view ensemble of predictive results in terms of a scoreboard and assess operational ease of use.
- Advance scoreboard models and develop crew interface to utilize on-board space environment observation data.







Intensity Scoreboard showing model outputs for 28 Mar 2022 ESPE. Featured models include the empirical models UMASEP, REIEASE and SEPMOD as well as the physics-based model SEPMOD.





## Earth-Independent Space Weather Forecast and Crew Alert Systems

- Type
  - Mid Term Architecture Enabling
- Description
  - Develop on-board, integrated space weather observation system (x-ray, chronograph, fields and particles, magnetograph) and assess Mars-centric observational (orbital, deep-space) asset needs supporting Earth-independent solar particle event monitoring to enable human Mars missions off the Earth-Sun axis.
  - Develop real-time, operational, autonomous forecasting software fed by solar observational inputs capable of monitoring/predicting SPE radiation hazards without access to Earth-based communications.
  - Ensure available data necessary along the Mars-Sun line for inputs into models and reliability of current state of the art procedures providing actionable information once event is detected.
  - Reduce mass, power, volume of detector/technology systems.
  - Test systems on crewed platforms to close gap for Mars transit and surface operations.





## Earth-Independent Space Weather Forecast and Crew Alert Systems

#### Impact

- Delayed response time and delayed accuracy in seeking shelter from SPE events.
- Crew will be at increased risk of in-mission health/performance decrements and long-term health consequences if there are long delays in seeking shelter, while a high false-positive rate of SPE forecasted events will negatively impact mission efficiency and objectives.

#### Elements

Transit Habitat, Mars Descent System, Mars Ascent Vehicle, Mars xEVA,
Mars Pressurized Rover, Mars Long Duration Surface Habitat





## Earth-Independent Space Weather Forecast and Crew Alert Systems

- Funded Projects
  - Collaborative effort between SMD/HEOMD/STMD
  - Pathfinder measurements: initial phase of sensor technology testing and data analyses using HERMES heliophysics radiation measurement experiment. (SMD F; Integration onto Gateway F); TRL=8
- Gap Closure Activities
  - Advanced sensor development, miniaturization, & spaceflight validation of components (U); TRL= 6
  - Integrated instrument suite payload for crew missions & operational testing (U); TRL=4
  - Software/model development for Earth-independent warning and actionable procedures (U); TRL=4

#### ECLSS-CHP SCLT ROADMAP - REVISION 2022.0 NASA INTERNAL ONLY **Space Radiation Protection - Space Weather Forecasting** POC(s): Eddie Semones and Catherine McLeod Revised: 8/30/2022 FY21 FY22 FY23 FY24 FY25 FY26 FY27 FY28 FY29 FY30 FY31-35 FY36+ Additional Information PR SRR MTH SRR PR PDR PR CDR MTH CDF MTH Ops MTH PDR MTH Ops **Deliverables HLS CDR** HLS PDR **FSH SRR FSH PDR FSH CDR** FSH Ops FSH Ops PR Ops 1. [RAD.DEL.1] Scoreboards EVA CDR **EVA Ops** Mars Surface delivered for testing on Artemis I. STPRT.362: Solar Particle Events: Radiation models and forecasting [TRL 6/7] Q4FY22 Flight Rules & Concept of Ops Development Flight Rules & Concept of Ops Development Flight Rules and Concept of Ops Development [RAD.DEL.2] Scoreboards Dev. Peak Flux Scoreboard (EC) Dev. Peak Flux Scoreboard II (EC) delivered for usage on Artemis II Dev. Time Profile Scoreboard (EC) Dev. Time Profile Scoreboard II (EC) & II.I [TRL 8] Q4FY24 Solar Maximum Develop 'All-Clear' Display (EC) 3. [NEW] Scoreboards delivered for Develop 'All-Clear' Display II (EC) Solar Minimum usage on Artemis IV & V. Q4FY27 Dev. Flare scoreboard II (EC) Dev. Flare scoreboard (EC) 6/7 Incorporate Dose Response ('Acute Radiation Risk Tool') **Decision Points** Scoreboard Platform Testing and Validation (EC) 8 Scoreboard Platform Test & Validation (EC) a) [RAD.DEC.1] Assessment of Space Weather Research and 9 Forecasting Scoreboards Operational Development and Testing of Semi-Autonomous Crew Space Weather Monitoring Capab Scoreboard progress - Annual Review [RAD.DEC.2] Assess Model STPRT.883: Earth-independent Space Weather Forecast and Crew Alert Systems Performance and integrated Continual Assessment & Feedback on Research Model Performance with Community & SMD Support Programs (EC) scoreboard platform - Annual Review Validate and Integrate New Models into Scoreboards (EC NASA SMD HERMES (SM) /ERSA Payload Development (ESA) 3 Gateway Operational Space Weather Instrument Suite STPRT.915 : GCR Radiation models and forecasting - Prediction of solar cycle modulation Ground Mars transit Funded Funding Codes: EC, SMD Unfunded LEO Mars surface Artemis missions Lunar orbit Deliverables See acronyms list at front of document. All mission information is notional and for the purpose of SCLT work only.

◆ Decision point 6

Lunar surface

TRL / 6 HRL





### Mission Impacts

- Gaps have been identified in SRAGs current capability to effectively support Artemis mission
- Address all aspects of radiation mitigation needs, 2 address SPE impacts
  - SPE forecasting and modeling (near-term)
  - Earth-independent forecast and alert systems (mid-term)
- Artemis missions in free space require advances in space weather modeling technologies
- Closure of these gaps represents development and incorporation of technologies for crew protection during enhancements to the space environment