

Deep Space Network Updates

Presented to: Planetary Sciences Advisory Committee

Presented by:
Philip Baldwin
Deputy Program Manager - Operations
Space Communications and Navigation (SCaN)
Space Operations Mission Directorate
National Aeronautics and Space Administration
July 9, 2024

SCAN Space Communications and Navigation

Science and Exploration, Enabled. Together.

Science and Exploration Enabled:

SCaN is the essential connection to our human explorers, our science missions, and our partners

Space Communications and
Navigation (SCaN) Serves as the enterprise responsible for all of NASA's space communications activities.
24/7 Global Near Earth and Deep Space Communications and Navigation Services

100+ Missions currently enabled by SCaN

Focal Points for NASA SCaN

Provide reliable, robust, and resilient space communications and navigation capabilities to enable safe execution of NASA missions. Architect, develop and partner to deliver the space communications and navigation capabilities of the future. Demonstrate world-class leadership and teamwork, with our customers, and domestic and global mission partners.

NASA's Communications Networks

SCaN's Deep Space Network (DSN)

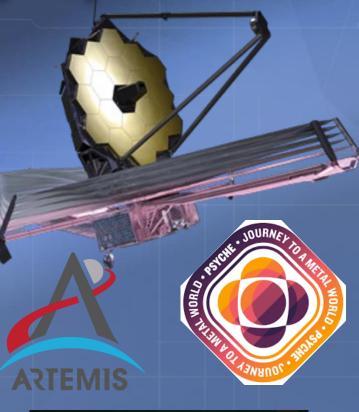
DSN's Role and Structure

DSN is the only US network dedicated to providing telecommunications services for missions in deep space

DSN also supports international spacecraft and scientific investigations (radar, radio astronomy and radio science)

DSN has three complexes, spread across the world to ensure 24/7 coverage

On behalf of SCaN, the NASA Jet Propulsion Laboratory (JPL) develops, operates, and manages DSN

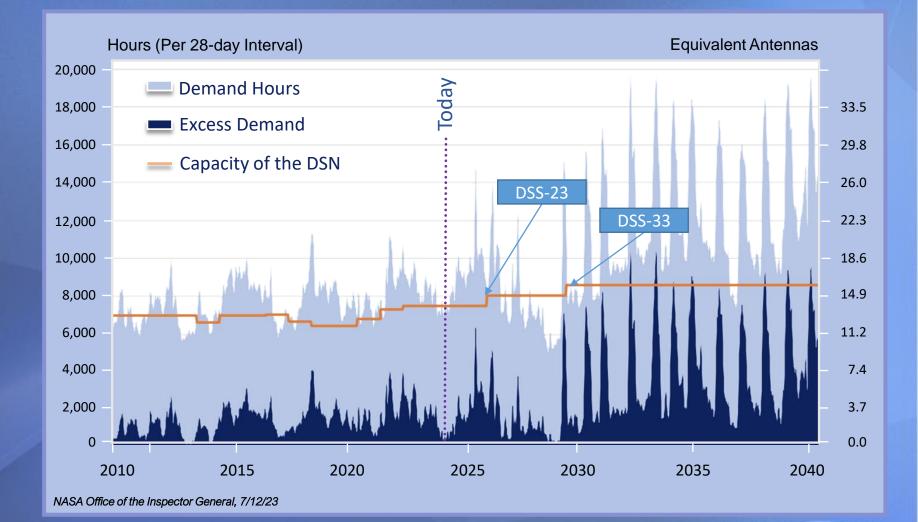


Canberra

Goldstone

Deep Space Communications are Key to Agency Priorities

DSN	Mission Dashboa	ard May 2024		
Completed	Current = 40		Future = 42	
Since 2019	Deep Space	Cis-Lunar, Lagrange,	Deep Space	Cis-Lunar, Lagrange,
InSight Mars	Juno Jupiter	Lunar Recon. Orb. Lunar	2024 or 2025	2024 or 2025
Mars Cube One	Lucy Asteroids	SOHO Helio L1 NASA-ESA	Europa Clipper Jupiter	SunRISE cluster 1
DART Asteroid	Perseverance Mars	ACE Helio L1	ESCAPADE Blue Mars	SunRISE cluster 2
LICIA (ASI) DART Cube	Mars Odyssey Mars	Wind Helio L1	ESCAPADE Gold Mars	GOES U
GOES T	Mars Recon. Orbiter Mars	MMS 1 Earth Ellip. Orb.	HERA (ESA) Asteroid	SWFO L1
Geotail	MAVEN Mars	MMS 2 Earth Ellip. Orb.	Rocket Lab Venus	IMAP L1
Artemis 1 Lunar	Curiosity Mars	MMS 3 Earth Ellip. Orb.	AstroForge Odin emergency	Carruthers L1
NEA Scout Cube	New Horizons	MMS 4 Earth Ellip. Orb.	2026 or later	Astrobotic Griffin Lunar
CuSP Cube	OSIRIS-REx (APEX)	Themis B Helio L1	Sample Return Lander	Lunar Trail Blazer
LunaHMAP Cube	Parker Solar Probe	Themis C Helio L2	Earth Return Orb. (ESA)	VIPER Lunar
Lunar Ice Cube	Voyager 1 Helio	DSCOVR L1	Rosalind Franklin (ESA)	Artemis-2 Orion
Team Miles Cube	Voyager 2 Helio	Chandra HEO	EnVision (ESA) Venus	Oracle-P Air Force L1
ArgoMoon (ASI) Cube	STEREO A Helio	JWST L2	DESTINY+ (JAXA) Aster.	Blue Orig Mark-1 SN-1
Omotenashi (JAXA) Cube	Akatsuki (JAXA) Venus	TESS Earth Ellip. Orb.	MMX (JAXA) Mars	Blue Orig Mark-1 SN-2
Equuleus (JAXA) Cube	Hayabusa-2E (JAXA)	CAPSTONE Cube	Emirates Asteroid (UAE)	2026 or later
INTEGRAL (ESA)	BepiColombo (ESA)	TDRS 6-13 emergency	JUICE Jupiter (ESA)	Exploration Upper Stage
Hayabusa-2 (JAXA)	Trace Gas Orb. (ESA)	Biosentinel Cube	VERITAS Venus	Gateway Lunar
Beresheet (Israel) Lunar	Mars Express (ESA)	XMM (ESA) Ellip. Orb.	DAVINCI+ Venus	Human Landing Sys 1
Mars Orbiter (ISRO)	Emirates Mars (UAE)	Gaia (ESA) L2	Dragonfly Titan	Human Landing Sys 2
Chandrayaan 2 Land (ISRO)	Psyche Asteroid	KPLO (KARI) Lunar		Human Landing Sys 3
Chandrayaan 2 Orb (ISRO)				Lunar Terrain Vehicles
Chandrayaan 3 Land (ISRO)				Beresheet-2 (Israel)
Lunar Flash Light Cube				Roman Telescope L2
SLIM & LEV (JAXA) Lunar				NEO Surveyor L1
Astrobotic Peregrine				Artemis-3 Orion
Lunar Node-1 CLPS				HelioSwarm
Intuitive Machines 1				LUPEX (JAXA/ISRO)



The DSN Challenge: Rapidly Growing User Needs

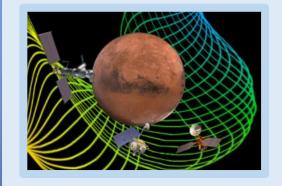
Cadence and complexity of cis-lunar and SMD missions are creating a new level of network demand not seen in decades

- New technologies to achieve Decadal Survey priorities are ever more data hungry
- JWST alone uses 10% of DSN capacity; sending back 25x the data of Hubble
- Infrastructure support has not kept up

Supporting DSN Users: Addressing the Needs

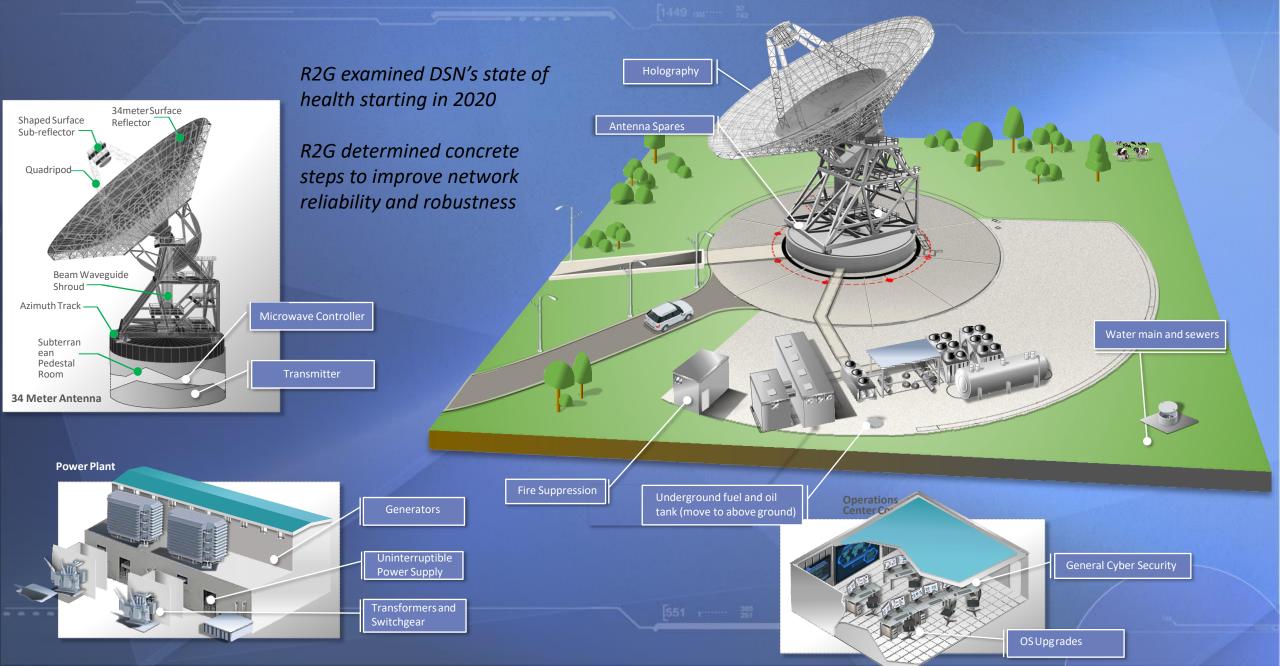
Building Capacity with DAEP

The DSN Aperture Enhancement Project (DAEP) will result in the following at each site:

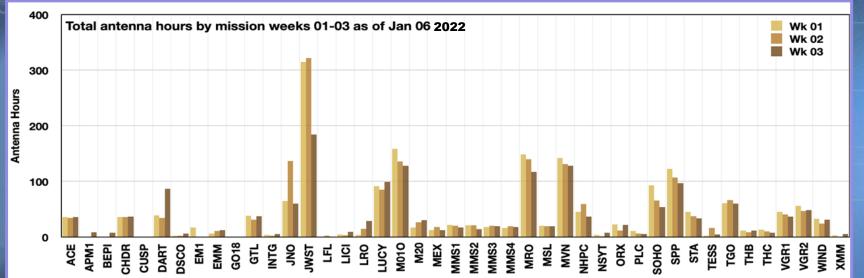

- Four BWG
- One 70 m backup
- One 80kw transmitter

Enhancing Capabilities with DLEU The DSN Lunar Exploration Upgrades (DLEU) will result in upgrading two DSN antennas at each complex, enabling simultaneous operations, enhanced uplinks, and increase data rates

Adding Support with LEGS Lunar Exploration Ground Sites (LEGS) will "lighten" the load on DSN by shifting selected lunar missions to a network of new 18meter class antennas



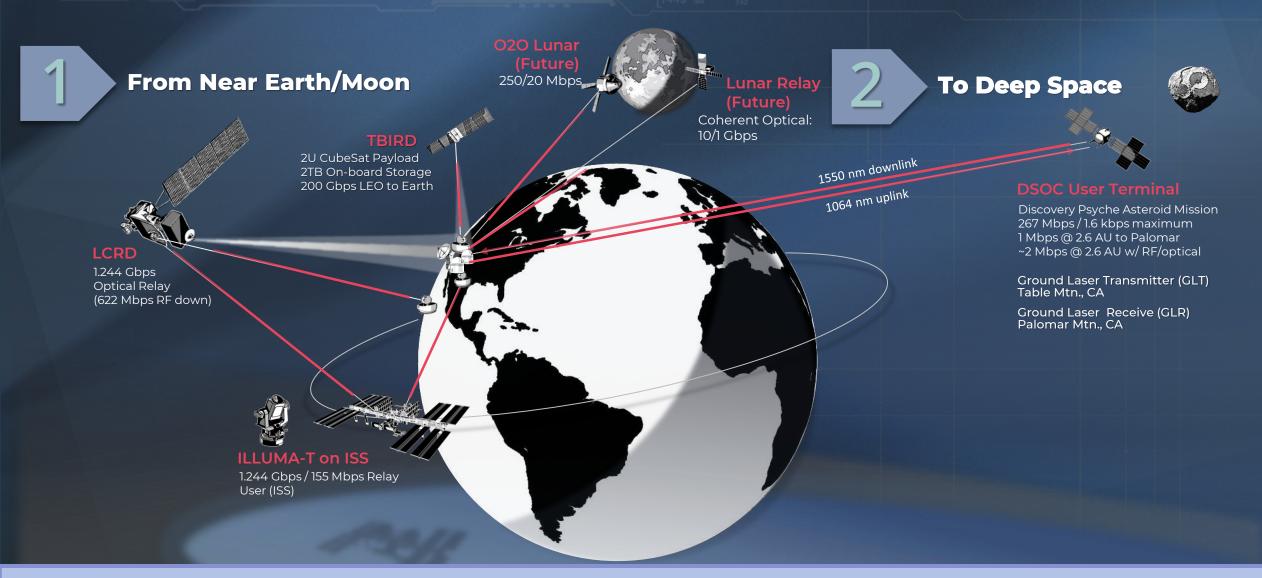
Increasing Efficiency with MSPA and Ka-band


Multiple Spacecraft per Aperture (MSPA) will unlock increasingly efficient asset utilization, while use of Ka-band will allow higher throughput links and reduce useclock demand for new missions

The use of MSPA and Ka-band on future missions will reduce DSN load and enhance performance for individual missions as well as the network

Supporting DSN Users: Reliability, Robustness and Resiliency

Supporting DSN Users: Scheduling and Prioritization



Applying lessons learned from JWST and Artemis 1 scheduling and prioritization techniques will also be key to SCaN's future approaches in support of planetary missions.

- A Multi-directorate working group has been formed to consider a new framework for DSN prioritization and scheduling
- Process improvements will include speeding up software, automation, collection of user preferences, and further definition of actions during spacecraft emergencies
- □ Evaluating the distributed nature of the scheduling teams to ensure efficiency and alignment
- □ Ultimately, there will be changes in how we provide missions with network support

We invite you to collaborate with us to generate a robust scheduling process, as well clear articulation of mission needs/preferences, to enable more dynamic schedules support in the era of human spaceflight

Supporting DSN Users: Exploring Optical

NASA has successfully completed extensive optical demonstrations. Operationalization needs to be driven by mission community.

Summary

If we're successful, so are you

□ Growing DSN demand is causing challenges to meeting science and exploration mission needs

- SCaN is working to enhance the capabilities, capacities, and efficiency of the DSN
- Major sustainment investments in the DSN are also helping improve reliability, robustness, and resilency

□ We need **your** help:

- □ Scheduling and prioritization will be a collaborative effort with the science community
- Future missions are encouraged to use Ka band and explore other mission efficiencies maximizing throughput (e.g., higher-order modulation and coding via ground system receiver and flight system transceiver upgrades)

lational Aeronautics and Space Administration

SCaN Space Communications and Navigation Science & Exploration, enabled.

Follow us at: <u>https://www.nasa.gov/scan</u>

Facebook: NASASCaN

Twitter: @NASASCaN

www.nasa.gov

Acronyms

ASF	Alaska Satellite Facility
BWG	Beam Waveguide
C&N	Communications & Navigation
CDR	Critical Design Review
CLPS	Commercial Lunar Payload Services
DAEP	DSN Aperture Enhancement Project
DLEU	DSN Lunar Exploration Upgrades
DSN	Deep Space Network
DSS	Deep Space Station
DTE	Direct-to-Earth

- ESDMD Exploration Systems Development Mission Directorate
- GAVRT Goldstone Apple Valley Radio Telescope
- HEF High Efficiency
- JPL Jet Propulsion Laboratory
- James Webb Space Telescope JWST
- KSAT Kongsberg Satellite Services

LEGS	Lunar Exploration Ground Sites
LEO	Low-Earth Orbit
NOAA	National Oceanic and Atmospheric Administration
NSN	Near Space Network
ORR	Operational Readiness Review
PDR	Preliminary Design Review
PNT	Position Navigation and Timing
R2G	Road to Green
RFP	Request for Proposal
SCaN	Space Communications and Navigation
SMD	Science Mission Directorate
SOMD	Space Operations Mission Directorate
SPC	Signal Processing Center
SSC	Swedish Space Corporation
TDRS	Tracking Data and Relay Satellite