Surface Topography and Vegetation Study Airborne Planning

Andrea Donnellan

Study Lead Jet Propulsion Laboratory California Institute of Technology

> **Craig Glennie** STV Co-Lead University of Houston

Needed measurement or observation

- STV surrogate data
 - Separate vegetation from bare Earth topography
 - For development of data fusion algorithms
 - Over a variety of targets and configurations
- Observation types
 - Radar
 - vegetation density
 - Lidar
 - vertical profile
 - canopy height
 - Stereoimaging
 - Color
 - Wide field of view

Measurement requirements

- Contemporaneous radar, lidar, stereoimaging
 - Ideally within 1 hour (≤3 days) airborne
 - ≤3days with satellite
- Measurement
 - Ideally ≤3m 3D
- Coverage
 - Multiple STV discipline targets
 - Consideration of ICESat-2, GEDI, optical orbits and timing
- Availability of Ground Truth Measurements
 - Contemporaneous UAV and ground measurements

Payload/instruments

- TBD at time of campaign but likely
 - UAVSAR/AirSAR
 - SAR-Fusion? (SWIR/Vis)
 - LVIS/CASALS
 - QUAKES
- Contemporaneous satellite-based observations such as
 - High Resolution stereoimagery (David Shean)
 - High Resolution Bistatic Radar (Pietro Milillo)
 - Laser Altimetry (Brooke Medley)

Where, when, and how the measurement needs to be made

- Prefer similar airspeeds 900 km/hr
 - Dependent on contemporaneous requirements
- Nominal altitude 12.5 km TBD by team
 - UAVSAR 12.5 km
 - LVIS -- from website, 10 km is typical
 - QUAKES 12.5 km
- Match swath widths of sensors
 - UAVSAR 16 km
 - LVIS from website, 2 km is typical
 - QUAKES 12 km at 12.5 km altitude

STV Proposed Airborne Campaigns

Year 1: East coast

- Summer
- Repeat Harvard forest in winter (leaf off)

Year 2: West Coast

- Time of year TBD **Year 3:** Pacific
- Time of year flexible, but should avoid rainy season
 Optional ABOVE site
- Optional ABOVE site
- Well-characterized
- Not near other targets of interest

6/17/2024

Sample Challenges to Address through Campaigns

To be fleshed out by STV science and technology groups and airborne planning group

- Temperate forests
 - · Ability to resolve ground in summer
 - Establish need for leaf off observations
- Boreal forests
 - Ability to resolve ground based on vegetation density
 - Ability to resolve tree height when crown narrows below resolution
 - Assess need for calibration
- Steep Slopes
 - Extent of minimizing shadows required (sun elevation)
- Snow and Ice
 - Extent roughness and shadowing improves topographic estimates
 - Assess variable penetration for different measurement approaches
- Shallow water
 - How much turbidity affects ability to resolve bottom
- Temporal changes
 - · How close in time are measurements from different instruments needed?
 - .e.g. flow or leaves blowing
- Tropical forests
 - Existing data for now?
 - Take advantage of existing campaigns and complement with additional instrument type

Intercomparison

- Measurements between technologies won't agree
- Measured surface is likely different between each technique
- What are the return horizons?
- Drives need for contemporaneous observations
- Scale of intercomparison
 - How to calibrate between measurements (hectare, few meters?)
- Fusion aspect
 - How to maximize the strengths of each method
- Need in situ and calibration/validation measurements

General Study Sites

- East Coast
- West Coast
- Pacific (Hawaii)
- Study Team Tasks
 - Identify existing field data collection sites
 - Ensure regions are easy to access and friendly to US overflight requests
 - Identify spacecraft overflight tracks of different techniques

STV Airborne Site Characteristics			
	West Coast	Pacific	East Coast
Fores	t		
Temperate Forest	х		х
Tropical		х	
Boreal Forest	x		x
Wetland	x	х	x
Mangrove			x
Leaf on, Leaf off (seasonal changes)	x		x
Solid Earth	ו		
Volanoes	x	х	
Landslides	x		x
Tectonics	x	х	
Steep slopes/gradients	x	х	x
Surface roughness	x	х	x
Hydrology & Coasta	I		
Emerging Vegetation (wetlands)	x	х	x
Lakes	x		x
River	x		x
Turbidity	x	х	x
Ocean	x	х	x
Rigosity/Roughness	x	х	x
Bottom types	x	х	x
Snow on, Snow off	x		x
Cryosphere	e		
Permafrost	x		
Glaciers	x		
Sea ice	х		х

Flight Hours and Cost Estimate

- Assumption
 - One Gulfstream on east and west coast
 - 42 flight hours per year total
 - 26 27 hours of transit for each campaign (should collect opportunistic data where possible)
 - •~\$500K
- 15 hours per experiment per year (~13,000 km)
- Data processing costs approximating same as campaign
 - ~\$500K split between radar, lidar, stereoimaging

Platforms

- UAVSAR dedicated Gulfstream-3 (AFRC)
- QUAKES and LVIS
 - Shared Gulfstream-3 (Langley)

Summary

- Collect contemporaneous lidar, radar, and stereoimaging data
 - Provide surrogate data for space-based performance modeling and science
 - Use NASA Gulfstream aircraft for consistent airspeeds
 - Oversample and compare to simulated orbit track data
- Focus on different types of targets
 - Temperate (leaf on and off) forests, boreal forests, wetlands
 - Bare and vegetated surfaces
 - Steep and shallow surfaces
 - Snow, ice, and permafrost
- Create airborne campaign planning group
- Ensure ground/near-surface calibration/validation data
- ~15 hours/year per region not including transit
- Expect equal resources for flight time and data processing

