Surface Topography and Vegetation Study

Airborne Planning

Andrea Donnellan
Study Lead
Jet Propulsion Laboratory
California Institute of Technology

Craig Glennie
STV Co-Lead
University of Houston
Needed measurement or observation

- STV surrogate data
 - Separate vegetation from bare Earth topography
 - For development of data fusion algorithms
 - Over a variety of targets and configurations

- Observation types
 - Radar
 - vegetation density
 - Lidar
 - vertical profile
 - canopy height
 - Stereomaging
 - Color
 - Wide field of view
Measurement requirements

• Contemporaneous radar, lidar, stereoimaging
 • Ideally within 1 hour (≤3 days) airborne
 • ≤3 days with satellite

• Measurement
 • Ideally ≤3m 3D

• Coverage
 • Multiple STV discipline targets
 • Consideration of ICESat-2, GEDI, optical orbits and timing

• Availability of Ground Truth Measurements
 • Contemporaneous UAV and ground measurements
Payload/instruments

• TBD at time of campaign but likely
 • UAVSAR/AirSAR
 • SAR-Fusion? (SWIR/Vis)
 • LVIS/CASALS
 • QUAKES

• Contemporaneous satellite-based observations such as
 • High Resolution stereoimagery (David Shean)
 • High Resolution Bistatic Radar (Pietro Milillo)
 • Laser Altimetry (Brooke Medley)
Where, when, and how the measurement needs to be made

• Prefer similar airspeeds – 900 km/hr
 • Dependent on contemporaneous requirements

• Nominal altitude 12.5 km TBD by team
 • UAVSAR – 12.5 km
 • LVIS – from website, 10 km is typical
 • QUAKEs – 12.5 km

• Match swath widths of sensors
 • UAVSAR – 16 km
 • LVIS – from website, 2 km is typical
 • QUAKEs – 12 km at 12.5 km altitude

6/17/2024
STV Proposed Airborne Campaigns

Year 1: East coast
- Summer
- Repeat Harvard forest in winter (leaf off)

Year 2: West Coast
- Time of year TBD

Year 3: Pacific
- Time of year flexible, but should avoid rainy season

Optional ABOVE site
- Well-characterized
- Not near other targets of interest
Sample Challenges to Address through Campaigns

To be fleshed out by STV science and technology groups and airborne planning group

- Temperate forests
 - Ability to resolve ground in summer
 - Establish need for leaf off observations

- Boreal forests
 - Ability to resolve ground based on vegetation density
 - Ability to resolve tree height when crown narrows below resolution
 - Assess need for calibration

- Steep Slopes
 - Extent of minimizing shadows required (sun elevation)

- Snow and Ice
 - Extent roughness and shadowing improves topographic estimates
 - Assess variable penetration for different measurement approaches

- Shallow water
 - How much turbidity affects ability to resolve bottom

- Temporal changes
 - How close in time are measurements from different instruments needed?
 - e.g. flow or leaves blowing

- Tropical forests
 - Existing data for now?
 - Take advantage of existing campaigns and complement with additional instrument type
Intercomparison

- Measurements between technologies won’t agree
- Measured surface is likely different between each technique
- What are the return horizons?
- Drives need for contemporaneous observations
- Scale of intercomparison
 - How to calibrate between measurements (hectare, few meters?)
- Fusion aspect
 - How to maximize the strengths of each method
- Need in situ and calibration/validation measurements
General Study Sites

- East Coast
- West Coast
- Pacific (Hawaii)

Study Team Tasks
- Identify existing field data collection sites
- Ensure regions are easy to access and friendly to US overflight requests
- Identify spacecraft overflight tracks of different techniques

<table>
<thead>
<tr>
<th>STV Airborne Site Characteristics</th>
<th>West Coast</th>
<th>Pacific</th>
<th>East Coast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate Forest</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Boreal Forest</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mangrove</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Leaf on, Leaf off (seasonal changes)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Solid Earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volcanoes</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Landslides</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tectonics</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Steep slopes/gradients</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hydrology & Coastal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerging Vegetation (wetlands)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lakes</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ocean</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigosity/Roughness</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bottom types</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Snow on, Snow off</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryosphere</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permafrost</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaciers</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea ice</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

6/17/2024
Flight Hours and Cost Estimate

• Assumption
 • One Gulfstream on east and west coast
 • 42 flight hours per year total
 • 26 – 27 hours of transit for each campaign (should collect opportunistic data where possible)
 • ~$500K

• 15 hours per experiment per year (~13,000 km)

• Data processing costs approximating same as campaign
 • ~$500K split between radar, lidar, stereoimaging
Platforms

• UAVSAR – dedicated Gulfstream-3 (AFRC)
• QUAKES and LVIS
 • Shared Gulfstream-3 (Langley)
Summary

• Collect contemporaneous lidar, radar, and stereoimaging data
 • Provide surrogate data for space-based performance modeling and science
 • Use NASA Gulfstream aircraft for consistent airspeeds
 • Oversample and compare to simulated orbit track data

• Focus on different types of targets
 • Temperate (leaf on and off) forests, boreal forests, wetlands
 • Bare and vegetated surfaces
 • Steep and shallow surfaces
 • Snow, ice, and permafrost

• Create airborne campaign planning group
• Ensure ground/near-surface calibration/validation data
• ~15 hours/year per region not including transit
• Expect equal resources for flight time and data processing