

National Aeronautics and Space Administration

Ø,

Physical Sciences Status

Biological and Physical Sciences Advisory Committee

April 25, 2024

Brad Carpenter

Biological & Physical Sciences

Overview

Science Highlights

1

Flight Project Status

3 Next Steps

Science Highlight – Fire Safety

- Quenching extinction of solid sphere diffusion flames induced by a sudden removal of gravity
 - Michael c. Johnston, James S. T'ien, Sheng-Yen Hsu, Ching-Wei Wu, Sandra L. Olson, Paul V. Ferkul
 - Fire Safety Journal 2024 <u>https://doi.org/10.1016/j.firesaf.2024.104137</u>

- Motivation understanding flame spread on solid fuels
 - Sketch from Urban, et al. Combustion and Flame 109 (2019)

Experiment and drop rig at Glenn Research Center

Polymethylmethacrylate sphere is ignited with a heated wire

Typical run

 Flames are ignited at the bottom of the sphere and allowed to burn for a set time before the experiment is dropped.
Forced flow is from below. Heat transfer to the solid is calculated from internal temperature gradient.

Test matrix summary with extinction boundary

Conclusions

- External flow and heat transfer to the solid are both important factors in flame quenching
- Current numerical models can't predict extinction limits. More detailed reaction kinetics and inclusion of radiation effects will be required

Science Highlight – Thermal Fluids

- Flow Boiling and Convection Experiment Transfer Line
 - Flight project currently in development

From: https://www.youtube.com/watch?v=Oee66sAXGtc

 Transfer of cryogenic fuels between vehicles is a critical capability for exploration missions. The density difference between liquid and gaseous fuels is O(1000-100), so vapor generation can have serious operational consequences

Science Highlight – Thermal Fluids

The chilldown path for a cryogen transfer line

Science Highlight – Thermal Fluids

FBCE-FT heat transfer and flow visualization test sections

Science Highlight – Microgravity Effects in Glass Formation

- Microgravity effects on nonequilibrium melt processing of neodymium titanate: thermophysical properties, atomic structure, glass formation and crystallization
 - Wilke, et al., npj Microgravity https://doi.org/10.1038/s41526-024-00371-x

Glass and Crystal Phase Transitions

Electrostatic levitation in the JAXA ELF on ISS

ELF Principle Concept

ELF Instrument in its rack

Experimental Results

X-ray scattering results for terrestrial and microgravity processed samples (curves offset)

Neutron diffraction results for terrestrial and microgravity processed samples (curves offset)

- Authors' conclusion:
 - The atomic structures of glasses were nearly identical for the Earth and microgravity processing conditions, except for subtle differences that could be explained by compositional variations of ~2 mol. % Nd2O3. This comparison provides validation, at least for rare-earth titanates, that the same glass can be manufactured in space as on Earth, aside from differences in thermal history.

TG3

TG4

20

More on the Decadal...

Some key takeaways for Physical Sciences

- We have compelling Key Scientific Questions
 - What principles enable identification, extraction, processing, and use of materials found in extraterrestrial environments to enable long-term, sustained human and robotic space exploration?
 - What are the relevant chemical and physical properties and phenomena that govern the behavior of fluids in space environments?
 - What are the mechanisms by which organisms sense and respond to physical properties of surroundings and to applied mechanical forces, including gravitational force?
 - What are the fundamental principles that organize the structure and functionality of materials, including but not limited to soft and active matter?
 - What are the fundamental laws that govern the behavior of systems that are far from equilibrium?

More on the Decadal...

Some key takeaways for Physical Sciences

- We have compelling Key Scientific Questions, ... and we should retune to be our best
 - Regular solicitations to re-engage with the research community
 - Plan our research for alignment with the space program- begin research for sustainable exploration
 - Look for deeper collaborations with the biological sciences

Current Status- our ISS research is drawing down

Research operations planned in the fluids and combustion racks

Our ISS research is drawing down

			BPS M	SFC	SISS	Opera	ations	(as of 3	3/6/	(24)		Fligh	nts and In	crements based upon	2/2/24 ISS Flight Plan
														<u> </u>	3/6/24
Task Name		JFN	FY22 I A M J J	AS	OND.	FY23 J F M A	VIJJA	SONDJ	FY F M	′24 A M J J A S	6 0 N	FY25 DJFMAM	JJAS	FY26	FY27 JJASONDJ
Flights Space	e X (SpX)	•	25 🛉	•	1	27	1 ↓ 28	29 29	<u>ک</u> 3۱		모) 31	12 32		∱= ₽	1 34
Northrup Grumman (NG)		17 🕇	0	18	8 🕇		19 🕈	1	20	1 21		1 22	1 ² 23	1 24	1 25
Increments		, ,	67		68	3	69	70		/1		2	73	74 75	76
MSRR															
GEDS, GTCS, CISDG, FAMIS, DIGS)	(-24 7	k	SpX-2	⁶ ∱ s	SpX-27	G1 spx-28 Spx-22 CISDG	TCS Spx-29				PPDC			
MSG/SUBSA															
MEFC (Dunand), FC1 (Wegst)								▼ MEFC SRR	V	FC1 SRR			FHA ∕∕ng-:	24 ┲ . NG-24 FHA ▽33 ┲	-33
BioServe				_											
BF1 (Zea), BAC (McLean)	NG-	в 17 🕇	F1 Crew ■ 🗣	/ 3			"BA SpX	C Reflight" -29 🔁 SpX	, K-29						
Levitation															
EML B 3.2, B 3.3 & B 3.4 EML B 4					X-26 ☆ B 3.2			SpX-29 ✿ B 3.	.3	B 3.4 FHA 4 NG-21 ▽ ♠	•			Β4	
ELF2 ELF 1, 5 & 6 ELF 3 ELF 4		ELF5	ELF1 X-26		ELF1 ELF2			ELF4	ELIF5	El Reflight ↓	LF1	ELF3			
							Ļ				*			*	
Completed Operations Upcoming Operation	ns		Flight				Retur	n			Furn	ace Swap to LO	GF CA's	Furnace Sw	ap to SQF

Research operations planned for materials science and biophysics

A new plan is in development

- FM2 Flammability of Materials on the Moon
 - Experiment payload aboard a lunar lander, conducting flammability tests of material in lunar gravity and 37% O₂
- Regular research solicitations
 - Funding to begin in 2025-2026
- Big, Hairy, Audacious Goals