2 min read
Clustered at the center of this image are six brilliant spots of light, four of them creating a circle around a central pair. Appearances can be deceiving, however, as this formation is not composed of six individual galaxies, but is actually two separate galaxies and one distant quasar imaged four times. Data from the NASA/ESA Hubble Space Telescope also indicates that there is a seventh spot of light in the very center, which is a rare fifth image of the distant quasar. This rare phenomenon is the result of the two central galaxies, which are in the foreground, acting as a lens.
The four bright points around the galaxy pair, and the fainter one in the very center, are in fact five separate images of a single quasar (known as 2M1310-1714), an extremely luminous but distant object. The reason we see this quintuple effect is a phenomenon called gravitational lensing. Gravitational lensing occurs when a celestial object with an enormous amount of mass – such as a pair of galaxies – causes the fabric of space to warp. When light from a distant object travels through that gravitationally warped space, it is magnified and bent around the huge mass. This allows humans here on Earth to observe multiple, magnified images of the far-away source. The quasar in this image actually lies farther away from Earth than the pair of galaxies. The galaxy pair’s enormous mass bent and magnified the light from the distant quasar, giving the incredible appearance that the galaxies are surrounded by four quasars – when in reality, a single quasar lies far beyond them!
Hubble’s Wide Field Camera 3 (WFC3) imaged the trio in spectacular detail. It was installed on Hubble in 2009 during Hubble Servicing Mission 4, Hubble’s final servicing mission. WFC3 continues to provide both top-quality data and fantastic images 12 years after its installation.
Text credit: European Space Agency (ESA)
Media Contact:
Claire Andreoli
NASA's Goddard Space Flight Center
301-286-1940