Fact Sheet: Cassini’s Grand Finale

Downloadable fact sheet about Cassini end of mission.
April 4, 2017
CreditNASA/JPL-Caltech
Language
  • english

Editor's Note: Updated April 4, 2017 at 10:46 a.m.

After almost 20 years in space, NASA's Cassini spacecraft begins the final chapter of its remarkable story of exploration: its Grand Finale.

Between April and September 2017, Cassini will undertake a daring set of orbits that is, in many ways, like a whole new mission. Following a final close flyby of Saturn's moon Titan, Cassini will leap over the planet's icy rings and begin a series of 22 weekly dives between the planet and the rings.

No other mission has ever explored this unique region. What we learn from these final orbits will help to improve our understanding of how giant planets – and planetary systems everywhere – form and evolve.

On the final orbit, Cassini will plunge into Saturn’s atmosphere, sending back new and unique science to the very end. After losing contact with Earth, the spacecraft will burn up like a meteor, becoming part of the planet itself.

Illustration showing the trajectory of Cassini's final orbits.
Cassini will end its mission with 22 daring loops passing through the gap between Saturn and its rings.

Daring exploration

Cassini's Grand Finale is about so much more than the spacecraft's final dive into Saturn. That dramatic event is the capstone of six months of daring exploration and scientific discovery. (And those six months are the thrilling final chapter in a historic 20-year journey.)

At times, the spacecraft will skirt the very inner edge of the rings; at other times, it will skim the outer edges of the atmosphere. While the mission team is confident the risks are well understood, there could still be surprises. It's the kind of bold adventure that could only be undertaken at the end of the mission.

Unique science

As Cassini plunges past Saturn, the spacecraft will collect some incredibly rich and valuable information that was too risky to obtain earlier in the mission:

  • The spacecraft will make detailed maps of Saturn's gravity and magnetic fields, revealing how the planet is arranged internally, and possibly helping to solve the irksome mystery of just how fast Saturn is rotating.
  • The final dives will vastly improve our knowledge of how much material is in the rings, bringing us closer to understanding their origins.
  • Cassini's particle detectors will sample icy ring particles being funneled into the atmosphere by Saturn's magnetic field.
  • Its cameras will take amazing, ultra-close images of Saturn's rings and clouds.

Discoveries to the end

Cassini’s final images will have been sent to Earth several hours before its final plunge, but even as the spacecraft makes its fateful dive into the planet's atmosphere, it will be sending home new data in real time. Key measurements will come from its mass spectrometer, which will sample Saturn's atmosphere, telling us about its composition until contact is lost.

While it's always sad when a mission comes to an end, Cassini's finale plunge is a truly spectacular end for one of the most scientifically rich voyages yet undertaken in our solar system. From its launch in 1997 to the unique Grand Finale science of 2017, the Cassini-Huygens mission has racked up a remarkable list of achievements.

Why End the Mission?

By 2017, Cassini will have spent 13 years in orbit around Saturn, following a seven-year journey from Earth. The spacecraft is running low on the rocket fuel used for adjusting its course. If left unchecked, this situation would eventually prevent mission operators from controlling the course of the spacecraft.

Two moons of Saturn, Enceladus and Titan, have captured news headlines over the past decade as Cassini data revealed their potential to contain habitable – or at least "prebiotic” – environments.

In order to avoid the unlikely possibility of Cassini someday colliding with one of these moons, NASA has chosen to safely dispose of the spacecraft in the atmosphere of Saturn. This will ensure that Cassini cannot contaminate any future studies of habitability and potential life on those moons.