Ingenuity Mars Helicopter’s 13th Flight: Wide-Angle Video From Perseverance
Credit | NASA/JPL-Caltech/ASU/MSSS |
---|---|
Language |
|
Video footage from NASA’s Perseverance Mars rover provides a big-picture perspective of the 13th flight of NASA’s Ingenuity Mars Helicopter. The 160.5-second reconnaissance sortie involved flying into challenging terrain and taking images of a specific rocky outcrop from multiple angles.
Captured from a distance of about 980 feet (300 meters) by the rover’s two-camera Mastcam-Z, Ingenuity is barely discernable near the lower left of frame at the beginning of the video.
An annotated version of this video highlighting the location of Ingenuity can be found here.
At 0:04 seconds into the video Ingenuity takes off and climbs to an altitude of to 26 feet (8 meters) before beginning its sideways translation to the right. At the video’s 0:59 second point, Ingenuity leaves the camera’s field of view on the right. Soon after (1:02), the helicopter returns into the field of view (the majority of frames that did not capture helicopter after it exited the camera’s field of view were purposely not downlinked from Mars by the team) and lands at a location near its takeoff point.
To obtain the footage, the “left eye” of the Mastcam-Z instrument is set for a wide-angle shot (26 mm focal length). The video is shot at 6 frames per second. Another view (available here) is taken at the same time by Mastcam-Z’s other (“right eye”) imager and provides a closer perspective of the helicopter as it took off and landed.
The Mastcam-Z investigation is led and operated by Arizona State University in Tempe, working in collaboration with Malin Space Science Systems in San Diego, California, on the design, fabrication, testing, and operation of the cameras, and in collaboration with the Neils Bohr Institute of the University of Copenhagen on the design, fabrication, and testing of the calibration targets.
A key objective for Perseverance's mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet's geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).
Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA's Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
For more information about Perseverance: