Suggested Searches

Artificial Intelligence and Machine Learning Science and Technology Interest Group

The NASA Cosmic Origins Program AI/ML Science and Technology Interest Group (AI/ML STIG) addresses the critical need to upskill the astronomy community with AI literacy. We provide structured, domain-specific AI education through stackable, bite-sized modular training designed for astronomical research contexts.

About AI/ML STIG

Building AI Literacy for Astronomical Research

Astrophysics is an emerging technology for big-data science, and the use of Artificial Intelligence (AI) and Machine Learning (ML) technology will be inevitable in the coming decades.

The AI and ML Science and Technology Interest Group (AI/ML STIG) is motivated by the awareness that upskilling the scientific community could have a transformative impact to counter critical challenges facing astronomical research today.

Asteroid streaks found by AI in Hubble image
Astronomers have used AI and Hubble data to hunt asteroids in between the orbits of Mars and Jupiter. These small asteroids are faint and difficult to detect, but leave distinctive curved, streak-like trails on Hubble’s observations. These streaks left by asteroids on Hubble images are one of the items that artificial intelligence programs can sort through vast amounts of data to help identify.
NASA, ESA, and B. Sunnquist and J. Mack (STScI) Acknowledgment: NASA, ESA, and J. Lotz (STScI) and the HFF Team

By providing structured, domain-specific AI education, the AI/ML STIG aims to accelerate NASA's competitive advantage in AI-enabled space science, build the interdisciplinary workforce essential for next-generation astronomical discoveries, create a model for other NASA programs facing similar upskilling challenges, and establish NASA’s leadership in responsible AI adoption to maximize the science return from its missions by the community. The modular, community-driven approach ensures scalability while maintaining the rigor and domain relevance essential for meaningful scientific advancement. This STIG serves as a focal point for addressing these challenges through community townhalls for discussions and organizing short tutorials to address specific astronomical AI applications, modules, and foundational concepts.

STIG Leadership

Yuan-Sen TingOSU
Alex GaglianoMIT
Siddharth Mishra-SharmaBoston University
Digvijay WadekarJohns Hopkins
Andrew SaydjariPrinceton
Carol Cuesta-LazaroMIT
Georgios ValogiannisUChicago

News & Events

Meetings, conferences, seminars, workshops, and other news and events for the STIG

AI/ML STIG Lecture Series, 8 Dec 2025

Model Context Protocol  Building on our last lecture about AI as a research agent, I’ll be covering something that’s been making waves lately: MCP, or Model Context Protocol. Much like HTTP did for the web, MCP is quickly becoming the…

Dec 8, 2025
Topic
AI/ML STIG Lecture Series December 8, 2025

The next AI / ML STIG lecture will be held on December 8th (Monday) at 4:00pm ET/1:00pm PT

Dec 8, 2025
Topic
AI/ML STIG Lecture Series, 22 Dec 2025

Fundamentals of Autodifferentiation with PyTorch/JAX Speaker Philip Cargile (Harvard CfA) Meeting Connection Join the Meeting

Dec 1, 2025
Topic
AI/ML STIG Lecture Series, 15 Dec 2025

Fundamentals of Autodifferentiation with PyTorch/JAX Speaker Philip Cargile (Harvard CfA) Meeting Connection Join the Meeting

Dec 1, 2025
Topic
AI/ML STIG Lecture Series, 24 Nov 2025

Multi-Agent Systems Speaker Francisco Villaescusa-Navarro, Flatiron Meeting Recording

Nov 24, 2025
Topic
AI/ML STIG Lecture Series Nov 24, 2025

The next AI & ML STIG lecture will be held on November 24th (Monday) at 4:00pm ET/1:00pm PT and will cover Large Language Models (LLM) as Autonomous Agents (Module 1) — LLM as Agent. The presentation will be given by Francisco Villaescusa-Navarro…

Nov 21, 2025
Topic

News Straight to Your Inbox

Subscribe to your community email news list

We will never share your email address.

Sign Up
An illustration of Sun-like star HD 181327 and its surrounding debris disk. The star is at top right. It is surrounded by a far larger debris disk that forms an incomplete ellpitical path and is cut off at right. There’s a huge cavity between the star and the disk. The debris disk is shown in shades of light gray. Toward the top and left, there are finer, more discrete points in a range of sizes. The disk appears hazier and smokier at the bottom. The star is bright white at center, with a hazy blue region around it. The background of space is black. The label Artist's Concept appears at lower left.