Last night we learned that our drill attempt on "Inverness" was not successful, reaching only 4 mm into the rock.
Last night we learned that our drill attempt on "Inverness" was not successful, reaching only 4 mm into the rock. Today's tactical team bounced back from this news and quickly assembled a plan to move on. This proved to be a busy day for the whole team, including me as the Geology Keeper of the Plan!
Our first order of business was discussing where to drive next. The grey Jura member is a top priority for sampling and understanding the geologic history of the Vera Rubin Ridge, so we felt it was imperative to try again. We ultimately decided to return to the "Lake Orcadie" region, where we previously attempted to drill on Sol 1977. In the past attempt, we were able to reach 10 mm depth using rotary only, so we are hopeful that this next attempt will reach sampling depths with the new percussion-enhanced drill capabilities.
Before driving off, we wrapped up at the Inverness site with APXS and ChemCam spectral measurements to characterize the composition of the drill tailings and the mini drill hole. We additionally targeted "Clune," a grey Jura bedrock, with ChemCam to continue our documentation of compositional heterogeneities in bedrock. Some science team members also identified two possible meteorite targets, so we obtained a ChemCam measurement of "Stoneyburn" and a Mastcam multispectral observation of "Rockend" to see if they have meteorite compositions. On Sol 2173, we planned a long 65 m drive to get Curiosity close to our next drill site in the Lake Orcadie region. We ended the plan on Sol 2174 with ChemCam calibration and sky observations, as well as our usual post-drive MARDI twilight image to document the terrain beneath the rover. If all goes well, we should be at our next drill site in no time!
Written by Vivian Sun, Planetary Geologist at NASA's Jet Propulsion Laboratory