Due to the lapse in federal government funding, NASA is not updating this website.

Suggested Searches

Rayleigh scattering in exoplanet atmospheres

Rayleigh scattering in exoplanet atmospheres
September 2, 2013
Credit NAOJ
Language
  • english

Artist’s rendition of the relationship between the composition of the atmosphere and transmitted colors of light.
Top: If the sky has a clear, upward-extended, hydrogen-dominated atmosphere, Rayleigh scattering disperses a large portion of the blue light from the atmosphere of the host while it scatters less of the red light. As a result, a transit in blue light becomes deeper than the one in red light.
Middle: If the sky has a less extended, water-rich atmosphere, the effect of the Rayleigh scattering is much weaker than in a hydrogen-dominated atmosphere. In this case, transits in all colors have almost the same transit depths.
Bottom: If the sky has extensive clouds, most of the light cannot be transmitted through the atmosphere, even though hydrogen dominates it. As a result, transits in all colors have almost the same transit depths. (Credit: NAOJ)