Suggested Searches

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the history of our Universe.

Active Mission

Webb studies every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System. Webb launched on Dec. 25th 2021. It does not orbit around the Earth like the Hubble Space Telescope, it orbits the Sun 1.5 million kilometers (1 million miles) away from the Earth at what is called the second Lagrange point or L2. 

Mission Type

Astrophysics

Partners

NASA/ESA/CSA

Launch

Dec 25, 2021

Arrival at L2

Jan 24, 2022

Key Facts

This image is from Webb’s NIRCam instrument, which saw this nebula in the near-infrared.

extending the tantalizing discoveries of the Hubble Space Telescope.

Engineers Prep James Webb Telescope for Integration

So big it has to fold origami-style to fit in the rocket and will unfold like a “Transformer” in space.

Webb Lagrange Points

Webb orbits the Sun 1.5 million kilometers from the Earth. (Hubble orbits 560 kilometers above the Earth.)

NASA’s Webb Sunshield Successfully Unfolds and Tensions in Final Tests

Webb has a 5-layer sunshield that protects the telescope from the infrared radiation of the Sun, Earth, and Moon; like having sun protection of SPF 1 million.

The image shows the galaxy cluster SMACS 0723 as it appeared 4.6 billion years ago

iIt will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang.in the ISS.

NASA’s James Webb Space Telescope has captured direct images of multiple gas giant planets within an iconic planetary system. HR 8799, a young system 130 light-years away, has long been a key target for planet formation studies.

The observations indicate that the well-studied planets of HR 8799 are rich in carbon dioxide gas. This provides strong evidence that the system’s four giant planets formed much like Jupiter and Saturn, by slowly building solid cores that attract gas from within a protoplanetary disk, a process known as core accretion.

The results also confirm that Webb can infer the chemistry of exoplanet atmospheres through imaging. This technique complements Webb’s powerful spectroscopic instruments, which can resolve the atmospheric composition.

This image shows the planetary system HR 8799. The background is black. At the center there is a symbol representing a star labeled HR 8799. The star’s light is blocked. There are four exoplanets, which look like fuzzy dots, pictured surrounding the star. Furthest from the star is a fuzzy, faint blue dot, labeled b, at the 10 o’clock position. At the 1 o’clock position, second furthest from the star is a blueish-white fuzzy dot labeled c. Just below that is an orange dot labeled e. At the 4 o’clock position, still near the star, is another fuzzy white dot labeled d.
NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light.
NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI)

Latest News

Webb's latest news releases in reverse chronological order. Search and sort the news feed with the controls immediately below.

NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide

NASA’s James Webb Space Telescope has captured direct images of multiple gas giant planets within an iconic planetary system. HR 8799, a young system 130 light-years away, has long been a key target for planet formation studies. The observations indicate…

Article
NASA’s Webb Peers Deeper into Mysterious Flame Nebula

The Flame Nebula, located about 1,400 light-years away from Earth, is a hotbed of star formation less than 1 million years old. Within the Flame Nebula, there are objects so small that their cores will never be able to fuse…

Article
NASA Webb Wows With Incredible Detail in Actively Forming Star System

High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and structure in Lynds 483 (L483). Two actively forming stars are responsible for the shimmering ejections of gas and dust that gleam in orange, blue, and…

Article
NASA’s Webb Exposes Complex Atmosphere of Starless Super-Jupiter

An international team of researchers has discovered that previously observed variations in brightness of a free-floating planetary-mass object known as SIMP 0136 must be the result of a complex combination of atmospheric factors, and cannot be explained by clouds alone.…

Article


Latest 2025 Images

The image below is a SLIDESHOW. Hover over the image to see the image title and controls. Click the image to go to a detail page with more info and the ability to download the image at various resolutions (click the downward arrow icon in lower right corner).

NASA's Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide

Keep Exploring

Discover More Topics From NASA