DEvice for the study of Critical LIquids and Crystallization – Directional Solidification Insert-Reflight (DSI-R)
Science Objectives
The DEvice for the study of Critical LIquids and Crystallization (DECLIC) is used to study crystal growth in transparent liquids. The Directional Solidification Insert (DSI) portion of DECLIC observes clear alloys that freeze like metals in microgravity. By providing real-time views of the crystal structures that form in the liquid, DECLIC-DSI sheds light on the physics that control the formation of solid materials.
Status
Delivery to the International Space Station via SpaceX Commercial Resupply Service Mission-23 (SpX-23)
Experiment Description
The Directional Solidification Insert Reflight (DSI-R) investigation involves the study of directional solidification in relation to SCN-based bulk alloys (succinonitrile-a transparent organic substance in the liquid state that is used to study the phenomena related to solidification processes) and transparent model alloys. This includes investigating the birth and growth of morphological instabilities at the solid-liquid interface and the effects of coupling between the solidifying interface and areas of convection, through a systematic variation of process parameters such as temperature. By observing these phenomena in a microgravity environment, it is possible to refine the theoretical models and numerical simulation predictions, which ultimately results in an improvement of industrial ground-based material development processes. The goal of these reduced-gravity experiments on ISS is to obtain benchmark data on cellular and dendritic microstructure formation under diffusive transport conditions. This investigation directly addresses outstanding issues that remain open in the understanding of complex dendritic microstructures.
Space Applications
Microgravity provides a unique environment for studying the crystallization of solid materials in multi-phase liquids. Crystals grown in space are larger and have fewer defects so ideal crystals may need to be grown in microgravity conditions.
Earth Applications
Studying these crystal forming events in space eliminates the influence of gravity, which leads to more accurate predictions and computer simulations. Crystal growth research in space helps to improve ground manufacturing, which make products through melting and solidifying materials.