Suggested Searches

1 min read

Hubble Zooms In on Heart of Mystery Comet

Hubble Zooms In on Heart of Mystery Comet

NASA's Hubble Space Telescope has probed the bright core of Comet 17P/Holmes, which, to the delight of sky watchers, mysteriously brightened by nearly a millionfold in a 24-hour period beginning Oct. 23, 2007.

Astronomers used Hubble's powerful resolution to study Comet Holmes' core for clues about how the comet brightened. The orbiting observatory's Wide Field Planetary Camera 2 (WFPC2) monitored the comet for several days, snapping images on Oct. 29, Oct. 31, and Nov. 4. Hubble's crisp "eye" can see objects as small as 33 miles (54 kilometers) across, providing the sharpest view yet of the source of the spectacular brightening.

The Hubble image at right, taken Nov. 4, shows the heart of the comet. The central portion of the image has been specially processed to highlight variations in the dust distribution near the nucleus. About twice as much dust lies along the east-west direction (the horizontal direction) as along the north-south direction (the vertical direction), giving the comet a "bow tie" appearance.

The composite color image at left, taken Nov. 1 by an amateur astronomer, shows the complex structure of the entire coma, consisting of concentric shells of dust and a faint tail emanating from the comet's right side.

The nucleus - the small solid body that is the ultimate source of all the comet's activity - is still swaddled in bright dust, even 12 days after the spectacular outburst. "Most of what Hubble sees is sunlight scattered from microscopic particles," explained Hal Weaver of The Johns Hopkins University Applied Physics Laboratory in Laurel, Md., who led the Hubble investigation. "But we may finally be starting to detect the emergence of the nucleus itself in this final Hubble image."

Hubble first observed Comet 17P/Holmes on June 15, 1999, when there was virtually no dusty shroud around the nucleus. Although Hubble cannot resolve the nucleus, astronomers inferred its size by measuring its brightness. Astronomers deduced that the nucleus' diameter was approximately 2.1 miles (3.4 kilometers), about the length of New York City's Central Park. They hope to use the new Hubble images to determine the size of the comet's nucleus to see how much of it was blasted away during the outburst.

Hubble's two earlier snapshots of Comet Holmes also showed some interesting features. On Oct. 29, the telescope spied three "spurs" of dust emanating from the nucleus, while the Hubble images taken on Oct. 31 revealed an outburst of dust just west of the nucleus.

The Hubble images, however, do not show any large fragments near the nucleus of Comet Holmes, unlike the case of Comet 73P/Schwassmann-Wachmann 3 (SW3). In the spring of 2006 Hubble observations revealed a multitude of "mini-comets" ejected by SW3 after the comet increased dramatically in brightness.

Ground-based images of Comet Holmes show a large, spherically symmetrical cloud of dust that is offset from the nucleus, suggesting that a large fragment broke off and subsequently disintegrated into tiny dust particles after moving away from the main nucleus.

Unfortunately, the huge amount of dust near the comet's nucleus and the comet's relatively large distance from Earth (149 million miles, or 1.6 astronomical units, for Holmes versus 9 million, or 0.1 astronomical unit, for SW3) make detecting fragments near Holmes nearly impossible right now, unless the fragments are nearly as large as the nucleus itself.

The Hubble Comet Holmes observing team comprises H. Weaver and C. Lisse (The Johns Hopkins University Applied Physics Laboratory); P. Lamy (Laboratoire d'Astrophysique de Marseille, France); I. Toth (Konkoly Observatory, Hungary); M. Mutchler (Space Telescope Science Institute); W. Reach (California Institute of Technology); and J. Vaubaillon (California Institute of Technology).

About the Object

  • R.A. Position
    R.A. PositionRight ascension – analogous to longitude – is one component of an object's position.
    03h 42m
  • Dec. Position
    Dec. PositionDeclination – analogous to latitude – is one component of an object's position.
    +50° 37'
  • Constellation
    ConstellationOne of 88 recognized regions of the celestial sphere in which the object appears.
    Perseus
  • Distance
    DistanceThe physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
    On November 4, 2007, Comet 17P/Holmes was 1.62 Astronomical Units from the Earth, and 2.48 Astronomical Units from the Sun.
  • Dimensions
    DimensionsThe physical size of the object or the apparent angle it subtends on the sky.
    Comet 17P/Holmes has the following orbital values: Aphelion distance: 5.2 Astronomical Units; Perihelion distance: 2.1 Astronomical Units; Semi-major axis: 3.6 Astronomical Units

About the Data

  • Data Description
    Data DescriptionProposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
    Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
    Ground Based Image (left): The ground-based image of Comet 17P/Holmes was taken November 1, 2007, by astrophotographer Alan Dyer. The observations were made in southern Alberta, Canada with a 105mm apochromatic refractor at f/5 with a Canon 20Da camera at ISO400. Field is about 2.5 x 1.5 degrees. Hubble Image (right): The Hubble image was created from HST data from proposal 11418: H. Weaver (Johns Hopkins University/Applied Physics Laboratory), C. Lisse (University of Maryland), P. Lamy (Space Astronomy Laboratory, Marseille), I. Toth (Hungarian Academy of Sciences), W. Reach and J. Vaubaillon (California Institute of Technology), and M. Mutchler (STScI).
  • Instrument
    InstrumentThe science instrument used to produce the data.
    HST>WFPC2 (right)
  • Exposure Dates
    Exposure DatesThe date(s) that the telescope made its observations and the total exposure time.
    November 1, 2007 (left) and November 4, 2007 (right)
  • Filters
    FiltersThe camera filters that were used in the science observations.
    WFPC2: F555W (V) and F675W (R)
  • Object Name
    Object NameA name or catalog number that astronomers use to identify an astronomical object.
    Comet 17P/Holmes
  • Object Description
    Object DescriptionThe type of astronomical object.
    Periodic Comet in our Solar System
  • Release Date
    November 15, 2007
  • Science Release
    Hubble Zooms In on Heart of Mystery Comet
  • Credit
    Hubble Image: NASA, ESA, and H. Weaver (The Johns Hopkins University Applied Physics Laboratory); Ground-based Image: A. Dyer, Alberta, Canada

Downloads

  • PDF
    (1.6 MB)
  • 3000 × 2400
    jpg (1.21 MB)
  • 200 × 200
    jpg (11.02 KB)
  • 400 × 274
    jpg (24.74 KB)
  • 875 × 600
    jpg (176.02 KB)
Compass and Scale
Compass and ScaleAn astronomical image with a scale that shows how large an object is on the sky, a compass that shows how the object is oriented on the sky, and the filters with which the image was made.

Share

Details

Last Updated
Mar 28, 2025
Contact
Media

Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov