Due to the lapse in federal government funding, NASA is not updating this website.

Suggested Searches

Latest Publications

Learn more about OSDR
About OSDRData Processing Overview
Latest NewsStandard Operating Procedures
Latest PublicationsFAQ
NewslettersContact OSDR

OSDR Enabled Publications – 130

TitleDescriptionDatasets
Spatially Resolved Transcriptomic Response of Human Deltoid Skin to Microgravity: A Differential Expression Analysis Using the OSD-574 DatasetSahu B, Sahu I (2025). Spatially Resolved Transcriptomic Response of Human Deltoid Skin to Microgravity: A Differential Expression Analysis Using the OSD-574 Dataset, Research Square. https://doi.org/10.21203/rs.3.rs-7394662/v1OSD-574
The evolution of superbugs in space: a genomic perspective on pathogens in the International Space Station environmentPearl S, Kumar H, Vijayakumar S, Basu S, Ramaiah S, Anbarasu A (2025). The evolution of superbugs in space: a genomic perspective on pathogens in the International Space Station environment, Journal of Genetic Engineering and Biotechnology. doi: 10.1016/j.jgeb.2025.100536
Genomic description of Microbacterium mcarthurae sp. nov., a bacterium collected from the International Space Station that exhibits unique antimicrobial-resistant and virulent phenotypeHill M S, Minnis V R, Simpson A C, Garcia M C, Bone D, Chung R K, Rushton E, et al (2025). Genomic description of Microbacterium mcarthurae sp. nov., a bacterium collected from the International Space Station that exhibits unique antimicrobial-resistant and virulent phenotype, Environmental Microbiology. doi: 10.1128/msystems.00537-25OSD-69, OSD-252
Feeding the cosmos: tackling personalized space nutrition and the leaky gut challengeBarcenilla B B, Rivero R, Lynch A, Cromer W, Gong J, Hrandi B, Stegmann M, et al, (2025). Feeding the cosmos: tackling personalized space nutrition and the leaky gut challenge, npj microgravity. https://doi.org/10.1038/s41526-025-00490-zOSD-269, OSD-796, OSD-569, OSD-570, OSD-571, OSD-575
Prediction of Cerebrospinal Fluid (CSF) Pressure with Generative Adversarial Network Synthetic Plasma-CSF Biomarker PairingPaladugu P, Kumar R, Yelamanchi J, Waisberg E, Ong J, Masalkhi M, Gowda C, et al, (2025). Prediction of Cerebrospinal Fluid (CSF) Pressure with Generative Adversarial Network Synthetic Plasma-CSF Biomarker Pairing, Neuroinformatics. https://doi.org/10.1007/s12021-025-09729-2OSD-363, OSD-364
Deep Cross-Organism Generalization of the Physiological Effects of Spaceflight from Mammalian Model Organisms to HumansAdamopoulos K I, Sanders L M, Hoarfrost A, Costes S V, (2025). Deep Cross-Organism Generalization of the Physiological Effects of Spaceflight from Mammalian Model Organisms to Humans, Sciendo. DOI: 10.2478/gsr-2025-0003OSD-111, OSD-228, OSD-227, OSD-135, OSD-21, OSD-51, OSD-195, OSD-370
Plasticity of Gene Expression in Spaceflight and Postflight in Relation to Cardiovascular Disease: Mechanisms and Candidate Repurposed DrugsBourdakou M M, Loizidou E M, Spyrou G M, (2025). Plasticity of Gene Expression in Spaceflight and Postflight in Relation to Cardiovascular Disease: Mechanisms and Candidate Repurposed Drugs, Proteomics. https://doi.org/10.1002/pmic.202400241OSD-258
Spaceflight causes strain-dependent gene expression changes in the kidneys of miceFinch R H, Vitry G, Siew K, Walsh S B, Beheshti A, Hardiman G, da Silveira W A. Spaceflight causes strain-dependent gene expression changes in the kidneys of mice, Microgravity. https://doi.org/10.1038/s41526-025-00465-0OSD-102, OSD-163
Effects of Space Flight on Inflammasome Activation in the Brain of MiceRoy U, Hadad R, Rodriguez A A, Saju A, Roy D, Gil M, Keane R W, et al (2025). Effects of Space Flight on Inflammasome Activation in the Brain of Mice, Cells. https://doi.org/10.3390/cells14060417OSD-738, OSD-751, OSD-752, EDA
Highly Effective Batch Effect Correction Method for RNA-seq Count DataZhang X, (2024). Highly Effective Batch Effect Correction Method for RNA-seq Count Data, Computational and Sturctural Biotechnology Journal. https://doi.org/10.1016/j.csbj.2024.12.010OSD-48, OSD-137, OSD-242
Machine learning ensemble identifies distinct age-related response to spaceflight in mammary tissueCasaletto J A, Zhao T, Yeung J, Ansari A, Raj A, Mishra A, Fry A, et al, (2025). Machine learning ensemble identifies distinct age-related response to spaceflight in mammary tissue, bioRxiv. https://doi.org/10.1101/2025.02.17.638732OSD-511
Behavioral and multiomics analysis of 3D clinostat simulated microgravity effect in mice focusing on the central nervous systemZhou L, Song C, Yang H, Zhao L, Li X, Sun X, Gao K, et al, (2025). Behavioral and multiomics analysis of 3D clinostat simulated microgravity effect in mice focusing on the central nervous system, Scientific Reports. https://doi.org/10.1038/s41598-025-90212-yOSD-32, OSD-352
Exploring the Impact of Microgravity on Gene Expression: Dysregulated Pathways and Candidate Repurposed DrugsGalcenko K, Bourdakou M M, Spyrou G M, (2025). Exploring the Impact of Microgravity on Gene Expression: Dysregulated Pathways and Candidate Repurposed Drugs, International Journal of Molecular Sciences. https://doi.org/10.3390/ijms26031287OSD-125, OSD-172, OSD-188, OSD-297
Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegansZhang G, Zhao L, Li Z, Sun Y, (2025). Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans, Life Sciences in Space Research. https://doi.org/10.1016/j.lssr.2024.11.004OSD-41, OSD-42, OSD-112, OSD-113
Space exploration and risk of Parkinson’s disease: a perspective reviewAli N, Beheshti A, Hampkian G, (2025). Space exploration and risk of Parkinson’s disease: a perspective review, npj microgravity. https://doi.org/10.1038/s41526-024-00457-6OSD-13, OSD-52, OSD-114, OSD-174
Bridging Earth and Space: A Flexible and Resilient Federated Learning Framework Deployed on the International Space StationCasaletto J A, Foley P, Fernandez M, Sanders L M, Scott R T, Ranjan S, Jain S, et al (2025). Bridging Earth and Space: A Flexible and Resilient Federated Learning Framework Deployed on the International Space Station, bioRxiv. doi: https://doi.org/10.1101/2025.01.14.633017OSD-435
Non-DNA radiosensitive targets that initiate persistent behavioral deficits in rats exposed to space radiationStraume T, Mora A M, Brown J B, Bansal I, Rabin B M, Braby L A, Wyrobek A J, (2024). Non-DNA radiosensitive targets that initiate persistent behavioral deficits in rats exposed to space radiation, Life Sciences in Space Research. https://doi.org/10.1016/j.lssr.2024.12.003OSD-490, OSD-492, OSD-495, OSD-626
Analyzing the relationship between gene expression and phenotype in space-flown mice using a causal inference machine learning ensembleCasaletto J A, Scott R T, Myrick M, Mackintosh G, Chok H, Saravia-Butler A, Hoarfrost A, et atl (2024). Analyzing the relationship between gene expression and phenotype in space-flown mice using a causal inference machine learning ensemble, Scientific Reports. https://doi.org/10.1038/s41598-024-81394-yOSD-47, OSD-48, OSD-137, OSD-168
Pharmacogenomics Guided Spaceflight: the intersection between space-flown drugs and space genesNelson T M, Rose J K, Walter C E, Cervantes-Navarro G L, Schmidt C M, Lin R, Alexander E, et al, (2024). Pharmacogenomics Guided Spaceflight: the intersection between space-flown drugs and space genes, bioRxiv. doi: https://doi.org/10.1101/2024.01.16.575951OSD-258
Spaceflight Shifts in Community rRNA Copy Number in the Salivary Microbiome of AstronautsWilliamson M R, (2024). Spaceflight Shifts in Community rRNA Copy Number in the Salivary Microbiome of Astronauts, bioRxiv. doi: https://doi.org/10.1101/2024.06.12.598653OSD-280
Feature Selection in High-Dimensional Space with Applications to Gene Expression DataPantha N, Ramasubramanian M, Gurung I, Maskey M, Sanders L M, Casaletto J, Costes S V, (2024). Feature Selection in High-Dimensional Space with Applications to Gene Expression Data. DOI: 10.1109/SOUTHEASTCON52093.2024.10500057OSD-47, OSD-48, OSD-137, OSD-168, OSD-173, OSD-242, OSD-245
A Machine Learning Model of Perturb-Seq Data for Use in Space Flight Gene Expression Profile AnalysisJohnson L, Casaletto  J, Costes S, Proctor C, Sanders L, (2024). A Machine Learning Model of Perturb-Seq Data for Use in Space Flight Gene Expression Profile Analysis, bioRxiv. doi: https://doi.org/10.1101/2024.11.28.625741OSD-91
GLARE: Discovering Hidden Patterns in Spaceflight Transcriptome Using Representation LearningSeo D, Strickland H F, Zhour M, Barker R, Ferl R J, Paul A L, Gilroy S, (2024). GLARE: Discovering Hidden Patterns in Spaceflight Transcriptome Using Representation Learning, bioRxiv. doi: https://doi.org/10.1101/2024.06.04.597470OSD-120
Microarray Gene Expression Analysis Using QR Decomposition, Machine Learning Algorithm, And Statistical ToolAli M, Choudhary J, (2024). Microarray Gene Expression Analysis Using QR Decomposition, Machine Learning Algorithm, And
Statistical Tool, 10th International Conference on Advanced Computing and Communications Systems (ICACCS). DOI: 10.1109/ICACCS60874.2024.10717230
NASA open science data repository: open science for life in spaceGebre S G, Scott R T, Saravia-Butler A M, Lopez D K, Sanders L M, Costes S V (2024). NASA open science data repository: open science for life in space, Nucleic Acids Research.
https://doi.org/10.1093/nar/gkae1116
Spaceflight disrupts gene expression of estrogen signaling in rodent mammary tissueArnold C, Casaletto J, Heller P (2024). Spaceflight disrupts gene expression of estrogen signaling in rodent mammary tissue, Medical Research Archives.
https://doi.org/10.18103/mra.v12i3.5220 
OSD-511
Systemic Genome Correlation Loss as a Central Characteristic of SpaceflightSakharkar A, Lukong E, Sanders L M, Costes S V, Taghibiglou C, Yang J, (2024). Systemic Genome Correlation Loss as a Central Characteristic of Spaceflight, bioRxiv.
https://doi.org/10.1101/2024.01.24.577100
OSD-118, OSD-174, OSD-258, OSD-323, OSD-431
Light has a principal role in the physiological adaptation of plants to the spaceflight environmentZhou M, Paul A-L, Ferl R, (2024). Light has a principal role in the physiological adaptation of plants to the spaceflight environment, ResearchSquare.
https://doi.org/10.21203/rs.3.rs-4085160/v1
OSD-678, OSD-120
To boldly go where no microRNAs have gone before: Spaceflight impact on risk for small-for-gestational-age infantCorti G, Kim J, Enguita F J, Guarnieri J W, Grossman L I, Costes S V, Fuentealba M, et al, (2024). To boldly go where no microRNAs have gone before: Spaceflight impact on risk for small-for-gestational-age infant, communications biology.
https://doi.org/10.1038/s42003-024-06944-6
OSD-55, OSD-336
Unveiling Parkinson’s Disease-like Changes Triggered by SpaceflightAli N, Beheshti A, Hampkian G, (2024). Unveiling Parkinson’s Disease-like Changes Triggered by Spaceflight, arxiv.
https://arxiv.org/pdf/2408.15021
OSD-13, OSD-52, OSD-114, OSD-174
Metabolic Stress In Space: ROS-Induced Mutations In Mice Hint At A New Path To CancerStolc V, Karhanek M, Freund F, Griko Y, Loftus D J, Ohayon M M, (2024). Metabolic Stress In Space: ROS-Induced Mutations In Mice Hint At A New Path To Cancer, Redox Biology.
https://doi.org/10.1016/j.redox.2024.103398
OSD-102, OSD-103, OSD-137, OSD-162
RadLab: An open science resource for radiation studies relevant to human spaceflightGrigorev K A, Miller J, Narici L, Costes S V, (2024). RadLab: An open science resource for radiation studies relevant to human spaceflight, Life Sciences in Space Research. https://doi.org/10.1016/j.lssr.2024.10.001
Mission SpaceX CRS-19 RRRM-1 Space Flight Induced Skin Genomic Plasticity via an Epigenetic TriggerSingh K, Verma P, Srivastava R, Rustagi Y, Kumar M, Verma S S, Mohanty S, et al, (2024). Mission SpaceX CRS-19 RRRM-1 Space Flight Induced Skin Genomic Plasticity via an Epigenetic Trigger, iScience. https://doi.org/10.1016/j.isci.2024.111382OSD-239
Profiling muscle transcriptome in mice exposed to microgravity using gene set enrichment analysisOommen A M, Stafford P, Joshi L, (2024). Profiling muscle transcriptome in mice exposed to microgravity using gene set enrichment analysis, npj microgravity. https://doi.org/10.1038/s41526-024-00434-zOSD-99, OSD-101, OSD-103, OSD-104, OSD-105, OSD-111, OSD-135, OSD-21
Space radiation measurements during the Artemis I lunar missionGeorge S P, Gaza R, Matthia D, Laramore D, Lehti J, Campbell-Ricketss T, Kroupa M, et al, (2024). Space radiation measurements during the Artemis I lunar mission, Nature. https://doi.org/10.1038/s41586-024-07927-7
Celebrating 30 years of access to NASA Space Life Sciences dataSanders L M, Lopez D K, Wood A E, Scott R T, Gebre S G, Saravia-Butler A M, and Costes S V, (2024). Celebrating 30 years of access to NASA Space Life Sciences data, GigaScience. DOI: 10.1093/gigascience/giae066
Transcriptional response of Arabidopsis thaliana’s root-tip to spaceflightShahbazi M, Rutter L A, Barker R, (2024). Transcriptional response of Arabidopsis thaliana’s root-tip to spaceflight, Plant Molecular Biology. DOI: 10.1007/s11103-024-01478-1OSD-120
Spaceflight alters host-gut microbiota interactionsGonzalez E, Lee M D, Tierney B T, Lipieta N, Flores P, Mishra M, Beckett L, et al, (2024). Spaceflight alters host-gut microbiota interactions, npj biofilms and microbiomes. https://doi.org/10.1038/s41522-024-00545-1OSD-245, OSD-247, OSD-249
Integrated analysis of miRNAome and transcriptome reveals that microgravity induces the alterations of critical functional gene modules via the regulation of miRNAs in short-term space-flown C. elegansHe X, Zhao L, Huang B, Zhang G, Lu Y, Mi D, Sun Y, (2024). Integrated analysis of miRNAome and transcriptome reveals that microgravity induces the alterations of critical functional gene modules via the regulation of miRNAs in short-term space-flown C. elegans, Life Sciences in Space Research. https://doi.org/10.1016/j.lssr.2024.07.001OSD-75, OSD-112
Fungal diversity differences in the indoor dust microbiome from built environments on earth and in spaceNastasi M, Haines S R, Bope A, Meyer M E, Horack J M, Dannemiller K C, (2024). Fungal diversity in the indoor dust microbiome from built environments on earth and in space, Scientific Reports. doi: 10.1038/s41598-024-62191-zOSD-694
Aging and putative frailty biomarkers are altered by spaceflightCamera A, Tabetah M, Castaneda V, Kim J, Galsinh A S, Haro-Vinueza A, Salinas I, et al, (2024). Aging and putative frailty biomarkers are altered by spaceflight, Scientific Reports. doi: 10.1038/s41598-024-57948-5OSD-21, OSD-52, OSD-99, OSD-101, OSD-103, OSD-104, OSD-105, OSD-195, OSD-202
Cosmic kidney disease: An integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunctionSiew K, Nestler K A, Nelson C, D’Ambrosio V, Zhong C, Li Z, Grillo A, et al, (2024). Cosmic kidney disease: An integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction, Nature Communications. doi: 10.1038/s41467-024-49212-1OSD-72, OSD-102, OSD-163, OSD-212, OSD-249, OSD-250, OSD-253, OSD-336, OSD-342, OSD-457, OSD-462, OSD-465, OSD-466, OSD-513, OSD-530, OSD-532, OSD-571, OSD-575, OSD-706, OSD-707, OSD-708, OSD-709, OSD-710, OSD-712
Harmonizing heterogeneous transcriptomics datasets for machine learning-based analysis to identify spaceflown murine liver-specific changesIlangovan H, Kothiyal P, Hoadley K A, Elgart R, Eley G, Eslami P, (2024). Harmonizing heterogeneous transcriptomics datasets for machine learning-based analysis to identify spaceflown murine liver-specific changes, npj microgravity. doi: 10.1038/s41526-024-00379-3OSD-47, OSD-168, OSD-242, OSD-245, OSD-379
Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflightHouerbi N, Kim J, Overbey E G, Batra R, Schweickart A, Patras L, Lucotti S, et al, (2024). Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight, Communications Medicine. doi: 10.1038/s41467-024-48841-wOSD-530, OSD-569, OSD-571
Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflightWu F, Du J, Overbey E, Kim J, Makhijani P, Martin N, Lerner C A, et al, (2024). Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight, Nature Communications. doi: 10.1038/s41467-023-42013-yOSD-420
Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflightKim J, Tierney B T, Overbey E G, Dantas E, Fuentealba M, Park J, Narayanan S A, et al, (2024). Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight, Nature Communications. doi: 10.1038/s41467-024-49211-2OSD-530, OSD-570, OSD-575
Space radiation damage rescued by inhibition of key spaceflight-associated miRNAsMcDonald J T, Kim J, Farmerie L, Johnson M L, Trovao N S, Arif S, Siew K, et al, (2024). Space radiation damage rescued by inhibition of key spaceflight-associated miRNAs, Nature Communications. doi: 10.1038/s41467-024-48920-yOSD-334, OSD-335, OSD-336, OSD-337, OSD-530, OSD-570, OSD-577
Spaceflight induces changes in gene expression profiles linked to insulin and estrogenMathyk B A, Tabetah M, Karim R, Zaksas V, Kim J, Anu R I, Muratani M, et al, (2024). Spaceflight induces changes in gene expression profiles linked to insulin and estrogen, Communications Biology. doi: 10.1038/s42003-023-05213-2OSD-48, OSD-98, OSD-99, OSD-100, OSD-101, OSD-102, OSD-103, OSD-104, OSD-105, OSD-168, OSD-238, OSD-239, OSD-240, OSD-241, OSD-254, OSD-530
Spatially resolved multiomics on the neuronal effects induced by spaceflight in miceMasarapu Y, Cekanaviciute E, Andrusivova Z, Westholm J O, Bjorklund A, Fallegger R, Badia-i-Mompel P, et al (2024). Spatially resolved multiomics on the neuronal effects <mark>induced by spaceflight in mice, Nature C<mark>ommunications.m> doi: 10.1038/s41467-024-48916-8GLDS-352 
Spatiotemporal expression and control of haemoglobin in spaceBorg J, Loy C, Kim J, Buhagiar A, Chin C, Damle N, De Vlaminck I, et al, (2024). Spatiotemporal expression and control of haemoglobin in space, Nature Communications. doi: 10.1038/s41467-024-49289-8OSD-530, OSD-570
Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatologyCope H, Elsborg J, Demharter S, McDonald J T, Wernecke C, Parthasarathy H, Unadkat H, et al, (2024). Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology, Communications Medicine. doi: 10.1038/s43856-024-00532-9OSD-238, OSD-239, OSD-240, OSD-241, OSD-254
Citizen Science Approach for Searching and Curating Literature on the Effects of Spaceflight on Cardiovascular Outcomes in Rodents and HumansNeset M, Scott R T, Narayaan S A, Komarova S V, (2024). Citizen Science Approach for Searching and Curating Literature on the Effects of Spaceflight on Cardiovascular Outcomes in Rodents and Humans, Citizen Science: Theory and Practice. DOI: 10.5334/cstp.687
Altered quorum sensing and physiology of Staphylococcus aureus during spaceflight detected by multi-omics data analysisHauserman M R, Ferraro M J, Carroll R K, Rice K C, (2024). Altered quorum sensing and physiology of Staphylococcus aureus during spaceflight detected by multi-omics data analysis, npj Microgravity. doi: 10.1038/s41526-023-00343-7OSD-145, OSD-500
Analysis of the influence of microgravity and space radiation on astronauts’ gene expression: An approach using quantum simulations and fuzzy logicVargas Cruz M A, (2024). Analysis of the influence of microgravity and space radiation on astronauts’ gene expression: An approach using quantum simulations and fuzzy logic, Precis. Nanomed. doi.org/10.33218/001c.117460OSD-530
Chromosomal positioning and epigenetic architecture influence DNA methylation patterns triggered by galactic cosmic radiationPerdyan A, Jakalski M, Horbacz M, Beheshti A, Mieczkowski J, (2024). Chromosomal positioning and epigenetic architecture influence DNA methylation patterns triggered by galactic cosmic radiation, Scientific Reports. doi: 10.1038/s41598-024-51756-7OSD-80, OSD-109, OSD-117, OSD-159, OSD-203, OSD-294, OSD-317, OSD-530
Diacylglycerol kinase is downregulated in the Drosophila Seizure Mutant during SpaceflightSamson F, Bhat A, Sayyah Z, Reinsch S, Blaber E, (2024). Diacylglycerol kinase is downregulated in the Drosophila Seizure Mutant during Spaceflight, Gravitational and Space Research. DOI: 10.2478/gsr-2024-0002OSD-207
Feature engineering from meta-data for prediction of differentially expressed genes: An investigation of Mus musculus exposed to space-conditionsOkwori M and Eslami A, (2024). Feature engineering from meta-data for prediction of differentially expressed genes: An investigation of Mus musculus exposed to space-conditions, Computational Biology and Chemistry. doi.org/10.1016/j.compbiolchem.2024.108026OSD-47, OSD-98, OSD-100, OSD-101, OSD-102, OSD-103, OSD-104, OSD-105, OSD-168, OSD-242
Gut permeability among Astronauts during Space missionsAkinsuyi O S, Xhumari J, Ojeda A, Roesch L F W, (2024). Gut permeability among Astronauts during Space missions, Life Sciences Space Research. doi.org/10.1016/j.lssr.2024.03.003OSD-247, OSD-249, OSD-466, OSD-530, OSD-667
Inspiration4 data access through the NASA Open Science Data RepositorySanders L M, Grigorev K A, Scott R T, Saravia-Butler A M, Polo S L, Gilbert R, Overbey E G, et al, (2024). Inspiration4 data access through the NASA Open Science Data Repository, npj microgravity. doi.org/10.1038/s41526-024-00393-5OSD-569, OSD-569, OSD-570, OSD-570, OSD-571, OSD-571, OSD-572, OSD-572, OSD-573, OSD-573, OSD-574, OSD-574, OSD-575, OSD-575, OSD-630, OSD-630, OSD-656, OSD-656, OSD-687, OSD-687
NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditionsAdamopoulos K I, Sanders L M, Costes S V, (2024). NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditions, npj microgravity. doi.org/10.1038/s41526-024-00392-6OSD-4, OSD-5, OSD-13, OSD-18, OSD-21, OSD-25, OSD-29, OSD-30, OSD-32, OSD-33, OSD-48, OSD-50, OSD-51, OSD-52, OSD-54, OSD-55, OSD-56, OSD-61, OSD-63, OSD-107, OSD-111, OSD-114, OSD-116, OSD-118, OSD-124, OSD-125, OSD-128, OSD-129, OSD-135, OSD-172, OSD-174, OSD-188, OSD-189, OSD-195, OSD-198, OSD-227, OSD-232, OSD-283, OSD-297, OSD-324, OSD-370, OSD-396, OSD-484, OSD-536, OSD-545, OSD-546, OSD-547
Substrate Matters: Ionic Silver Alters Lettuce Growth, Nutrient Uptake, and Root Microbiome in a Hydroponics SystemSpencer L, Costine B, Irwin T, Dixit A, Spern C, Diaz A, Lozzi B, (2024). Substrate Matters: Ionic Silver Alters Lettuce Growth, Nutrient Uptake, and Root Microbiome in a Hydroponics System, microorganisms. doi.org/10.3390/microorganisms12030515
Using single-sample networks to identify the contrasting patterns of gene interactions and reveal the radiation dose-dependent effects in multiple tissues of spaceflight miceZhang Y, Zhao L, Sun Y, (2024). Using single-sample networks to identify the contrasting patterns of gene interactions and reveal the radiation dose-dependent effects in multiple tissues of spaceflight mice, npj microgravity. doi.org/10.1038/s41526-024-00383-7OSD-47, OSD-98, OSD-99, OSD-100, OSD-101, OSD-102, OSD-103, OSD-104, OSD-105, OSD-137, OSD-162, OSD-163, OSD-164, OSD-168, OSD-173, OSD-194, OSD-238, OSD-240, OSD-241, OSD-242, OSD-243, OSD-244, OSD-245, OSD-246, OSD-247, OSD-248, OSD-253, OSD-288, OSD-379, OSD-401, OSD-546
Construction of dose prediction model and identification of sensitive genes for space radiation based on single-sample networks under spaceflight conditionsZhang Y, Du X, Zhao L, Sun Y, (2024). Construction of dose prediction model and identification of sensitive genes for space radiation based on single-sample networks under spaceflight conditions, International Journal of Radiation Biology. doi.org/10.1080/09553002.2024.2327393
Countermeasures for cardiac fibrosis in space travel: It takes more than a towel for a hitchhiker’s guide to the galaxyPaar V, Jiang S, Enriquez A, Kim J, Brunetta H S, Muratani M, Kubik A, et al (2023). Countermeasures for cardiac fibrosis in space travel: It takes more than a towel for a hitchhiker’s guide to the galaxy, ResearchSquare.
https://doi.org/10.21203/rs.3.rs-2351744/v1
OSD-530
Key Genes, Altered Pathways and Potential Treatments for Muscle Loss in Astronauts and Sarcopenic PatientsCaicedo A, Castaneda V, Diaz J, Haro-Vinueza A, Park J, Kim J, Overbey E, et al, (2023). Key Genes, Altered Pathways and Potential Treatments for Muscle Loss in Astronauts and Sarcopenic Patients, ResearchSquare.
https://doi.org/10.21203/rs.3.rs-2819258/v1
OSD-52
Intergalactic Interactions – Network Biology in Rodents from Spaceflight and Terra FirmaHacking S M, Sargin Z E, (2023). Intergalactic Interactions – Network Biology in Rodents from Spaceflight and Terra Firma, ResearchSquare.
https://doi.org/10.21203/rs.3.rs-3711156/v1
OSD-247, OSD-238, OSD-240, OSD-243, OSD-248
Batch effect correction methods for NASA GeneLab transcriptomic datasetsSanders L M, Chok H, Samson F, Acuna A U, Polo S H L, Boyko V, Chen Y C, et al (2023). Batch effect correction methods for NASA GeneLab transcriptomic datasets, Frontiers in Astronomy and Space Sciences. doi: 10.3389/fspas.2023.1200132OSD-47, OSD-48, OSD-137, OSD-168, OSD-173, OSD-242, OSD-245
Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts’ HealthSakharkar A and Yang J, (2023). Designing a novel monitoring approach for the effects of space travel on astronauts’ health, Life. doi.org/10.3390/life13020576OSD-174
Efficacy of the random positioning machine as a terrestrial analogue to microgravity in studies of seedling phototropismHughes A M, Vandenbrink J P, and Kiss J Z, (2023). Efficacy of the random positioning machine as a terrestrial analogue to microgravity in studies of seedling phototropism, Microgravity Science and Technology. doi: 10.1007/s12217-023-10066-9OSD-251
Explainable machine learning identifies multi-omics signatures of muscle response to spaceflight in miceLi K, Desai R, Scott R T, Steele J R, Machado M, Demharter S, Hoarfrost A, et al (2023). Explainable machine learning identifies multi-omics signatures of muscle response to spaceflight in mice, npj Microgravity. doi: 10.1038/s41526-023-00337-5OSD-104, OSD-104, OSD-105, OSD-105, OSD-488, OSD-488
Functional Meta-Analysis of the Proteomic Responses of Arabidopsis Seedlings to the Spaceflight Environment Reveals Multi-Dimensional Sources of Variability across Spaceflight ExperimentsOlanrewaju G O, Kruse C P S, and Wyatt S E, (2023). Functional Meta-Analysis of the Proteomic Responses of Arabidopsis Seedlings to the Spaceflight Environment Reveals Multi-Dimensional Sources of Variability across Spaceflight Experiment, International Journal of Molecular Sciences. doi.org/10.3390/ijms241914425OSD-38, OSD-522
Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish modelCahill T, da Silveira W A, Renaud L, Wang H, Williamson T, Chung D, Chan S, et al, (2023). Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish model, Scientific Reports. doi.org/10.1038/s41598-022-26976-4OSD-47
Large Maf transcription factor family is a major regulator of fast type IIb myofiber determinationSadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, et al, (2023). Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination, Cell Reports. doi.org/10.1016/j.celrep.2023.112289OSD-104
Arabidopsis telomerase takes off by uncoupling enzyme activity from telomere length maintenance in spaceBarcenilla B B, Meyers A D, Castillo-Gonzalez C, Young P, Min J H, Song J, Phadke C, et al (2023). Arabidopsis telomerase takes off by uncoupling enzyme activity from telomere length maintenance in space, Nature Communications. doi.org/10.1038/s41467-023-41510-4OSD-38, OSD-120, OSD-218, OSD-427
Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptomeBarker R, Kruse C P S, Johnson C, Saravia-Butler A, Fogle H, Chang H S, Trane R M, et al (2023). Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome, npj Microgravity. doi.org/10.1038/s41526-023-00247-6OSD-7, OSD-17, OSD-37, OSD-38, OSD-44, OSD-46, OSD-120, OSD-121, OSD-136, OSD-147, OSD-205, OSD-208, OSD-213, OSD-218, OSD-251
Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependentMalhan D, Yalçin M, Schoenrock B, Blottner D, and Relógio A, (2023). Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent, npj Microgravity. doi.org/10.1038/s41526-023-00273-4OSD-99, OSD-101, OSD-103, OSD-104, OSD-105, OSD-370
Transcriptomic Signature of the Simulated Microgravity Response in Caenorhabditis elegans and Comparison to Spaceflight ExperimentsÇelen I, Jayasinghe A, Doh J H, and Sabanayagam C R, (2023). Transcriptomic Signature of the Simulated Microgravity Response in Caenorhabditis elegans and Comparison to Spaceflight Experiments, Cells. doi.org/10.3390/cells12020270OSD-41, OSD-42, OSD-112, OSD-113
Assessing the Nucleotide-Level Impact of Spaceflight Stress using RNA-Sequencing DataKnight M S, Doherty C J, Nielsen D M, (2022). Assessing the Nucleotide-Level Impact of Spaceflight Stress using RNA-Sequencing Data, bioRxiv. https://doi.org/10.1101/2022.12.01.518235OSD-223
Validating Causal Diagrams of Human Health Risks for Spaceflight: An Example Using Bone Data from RodentsReynolds R J, Scott R T, Turner R T, Iwaniec U T, Bouxsein M L, Sanders L M, Antonsen E L, (2022). Validating Causal Diagrams of Human Health Risks for Spaceflight: An Example Using Bone Data from Rodents, Biomedicines. https://doi.org/10.3390/biomedicines10092187OSD-310, OSD-351, OSD-477, OSD-489
A multi omics longitudinal study of the murine retinal response to chronic low dose irradiation and simulated microgravityKothiyal P, Eley G, Ilangovan H, Hoadley K A, Elgart S R, Mao X W, and Eslami P (2022). A multi omics longitudinal study of the murine retinal response to chronic low dose irradiation and simulated microgravity, Scientific Reports. doi.org/10.1038/s41598-022-19360-9OSD-203
Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflightOverbey E G, Das S, Cope H, Madrigal P, Andrusivova Z, Frapard S, Klotz R, et al, (2022). Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight, Cell Reports Methods. doi.org/10.1016/j.crmeth.2022.100325OSD-402, OSD-403, OSD-404, OSD-405
Detection of Target Genes for Drug Repurposing to Treat Skeletal Muscle Atrophy in Mice Flown in SpaceflightManian V, Orozco-Sandoval J, Diaz-Martinez V, Janwa H, and Agrinsoni C, (2022). Detection of Target Genes for Drug Repurposing to Treat Skeletal Muscle Atrophy in Mice Flown in Spaceflight, Genes. doi.org/10.3390/genes13030473OSD-21, OSD-99, OSD-101, OSD-103, OSD-104, OSD-111, OSD-135
DNA methylation dynamics associated with long-term isolation of simulated space travelHou F, Zhou X, Zhou S, Liu H, Huang Y E, Yuan M, Zhu J, et al (2022). DNA methylation dynamics associated with long-term isolation of simulated space travel, iScience. doi: 10.1016/j.isci.2022.104493.OSD-140
Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated ReviewDrago-Ferrante R, Di Fiore R, Karouia F, Subbannayya Y, Das S, Mathyk B A, Arif S, et al (2022). Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review, Int. J. Mol. Sci. doi: https://doi.org/ 10.3390/ijms23137465
In Vitro Relationships of Galactic Cosmic Radiation and Epigenetic Clocks in Human Bronchial Epithelial CellsNwanaji-Enwerem J C, Boileau P, Galazka J M, (2022). In Vitro Relationships of Galactic Cosmic Radiation and Epigenetic Clocks in Human Bronchial Epithelial Cells, Environmental and Molecular Mutagenesis. doi.org/10.1002/em.22483OSD-317
Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiomeMadrigal P, Singh N K, Wood J M, Gaudioso E, Hernández del Olmo F, Mason C E, Venkateswaran K, and Beheshti A, (2022). Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiome, Microbiome. doi.org/10.1186/s40168-022-01332-wOSD-67, OSD-69, OSD-302, OSD-303, OSD-309, OSD-311, OSD-350
Multidrug-resistant Acinetobacter pittii is adapting to and exhibiting potential succession aboard the International Space Station.Tierney B T, Singh N K, Simpson A C, Hujer A M, Bonomo R A, Mason C E, and Venkateswaran K, (2022). Multidrug-resistant Acinetobacter pittii is adapting to and exhibiting potential succession aboard the International Space Station, Microbiome. doi.org/10.1186/s40168-022-01358-0OSD-252
Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in miceVitry G, Finch R, Mcstay G, Behesti A, De jean S, Larose T, Wotring V, et al (2022). Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in mice, iScience. doi.org/10.1016/j.isci.2022.105213OSD-103, OSD-168
Omics studies of plant biology in spaceflight: A critical review of recent experimentsHughes A M and Kiss J Z (2022). Omics studies of plant biology in spaceflight: A critical review of recent experiments, Frontiers in Astronomy and Space Sciences. doi.org/10.3389/fspas.2022.964657OSD-7, OSD-120
Plant Space Biology in the Genomics AgeMeyers A and Wyatt S E, (2022). Plant Space Biology in the Genomics Age, Annual Plant Reviews. doi:10.1002/9781119312994.apr0784OSD-7, OSD-8, OSD-16, OSD-17, OSD-22, OSD-37, OSD-38, OSD-44, OSD-45, OSD-46, OSD-57, OSD-59, OSD-120, OSD-121, OSD-134, OSD-136, OSD-144, OSD-147, OSD-193, OSD-205, OSD-208, OSD-210, OSD-213, OSD-217, OSD-218, OSD-219, OSD-220, OSD-223, OSD-251, OSD-267, OSD-268, OSD-269, OSD-281, OSD-282, OSD-284, OSD-296, OSD-301, OSD-307, OSD-313, OSD-314, OSD-320, OSD-321, OSD-329, OSD-346, OSD-375
Recent transcriptomic studies to elucidate the plant adaptive response to spaceflight and to simulated space environmentsManzano A, Carnero-Diaz E, Herranz R, and Medina F J, (2022). Recent transcriptomic studies to elucidate the plant adaptive response to spaceflight and to simulated space environments, iScience. doi.org/10.1016/j.isci.2022.104687OSD-7, OSD-8, OSD-17, OSD-37, OSD-38, OSD-44, OSD-120, OSD-121, OSD-144, OSD-147, OSD-205, OSD-213, OSD-217, OSD-218, OSD-220, OSD-223, OSD-251, OSD-284, OSD-313, OSD-314, OSD-321, OSD-416, OSD-427
Reducing virus infection risk in space environments through nutrient supplementationLi H, Xue Y W, Quan Y, and Zhang H Y, (2022). Reducing virus infection risk in space environments through nutrient supplementation, Genes. doi.org/10.3390/genes13091536OSD-140
Space omics research in Europe: contributions, geographical distribution and ESA member state funding schemesDeane C S, Borg J, Cahill T, Carnero-Diaz E, Etheridge T, Hardiman G, Leys N, (2022). Space omics research in Europe: contributions, geographical distribution and ESA member state funding schemes, iScience. https://doi.org/10.1016/j.isci.2022.103920
An integrative network science and artificial intelligence drug repurposing approach for muscle atrophy in spaceflight microgravity.Manian V, Orozco-Sandoval J, and Diaz-Martinez V, (2021). An integrative network science and artificial intelligence drug repurposing approach for muscle atrophy in spaceflight microgravity, Frontiers in Cell and Developmental Biology. doi: 10.3389/fcell.2021.732370OSD-4, OSD-244, OSD-245, OSD-246, OSD-288, OSD-289
Detection of Genes in Arabidopsis thaliana L. Responding to DNA Damage from Radiation and Other Stressors in SpaceflightManian V, Orozco-Sandoval J, and Diaz-Martinez V, (2021). Detection of Genes in Arabidopsis thaliana L. Responding to DNA Damage from Radiation and Other Stressors in Spaceflight, Genes. doi.org/10.3390/genes12060938OSD-7, OSD-37, OSD-38, OSD-46, OSD-120
Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravityPaul A M, Overbey E G, da Silveira W A, Szewczyk N, Nishiyama N C, Pecaut M J, Anand S, et al, (2021). Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity, Scientific Reports. doi.org/10.1038/s41598-021-9043
Knowledge Network Embedding of Transcriptomic Data from Spaceflown Mice Uncovers Signs and Symptoms Associated with Terrestrial DiseasesNelson, C.A., Acuna, A.U., Paul, A.M., Scott, R.T., Butte, A.J., Cekanaviciute, E, Baranzini, S.E., and Costes, S.V., (2021). Knowledge Network Embedding of Transcriptomic Data from Spaceflown Mice Uncovers Signs and Symptoms Associated with Terrestrial Diseases, Life. doi.org/10.3390/life11010042OSD-4, OSD-244, OSD-245, OSD-246, OSD-288, OSD-289
Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to SpaceflightCahill T, Cope H, Bass J J, Overbey E G, Gilbert R, da Silveira W A, Paul A M, et al (2021). Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight, International Journal of Molecular Sciences. doi.org/10.3390/ijms22179470OSD-3, OSD-21, OSD-99, OSD-103, OSD-104, OSD-113, OSD-370
NASA GeneLab RNA-seq consensus pipeline: standardized processing of short-read RNA-seq dataOverbey E G, Saravia-Butler A M, Zhang Z, Rathi K S, Fogle H, da Silveira W A, Barker R J, et al, (2021). NASA GeneLab RNA-seq consensus pipeline: standardized processing of short-read RNA-seq data, iScience. doi.org/10.1016/j.isci.2021.102361OSD-168, OSD-245
Network Analysis of Gene Transcriptions of Arabidopsis thaliana in Spaceflight MicrogravityManian, V., Orozco, J., Gangapuram, H., Janwa, H., and Agrinsoni, C., (2021). Network Analysis of Gene Transcriptions of Arabidopsis thaliana in Spaceflight Microgravity, Genes. doi.org/10.3390/genes12030337OSD-7, OSD-120
Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposuresBarker R, Costes SV, Miller J, Gebre SG, Lombardino J, Gilroy S, (2021). Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures, NPJ Microgravity. doi.org/10.1038/s41526-021-00143-xOSD-4, OSD-7, OSD-16, OSD-17, OSD-25, OSD-33, OSD-41, OSD-44, OSD-50, OSD-54, OSD-58, OSD-59, OSD-61, OSD-62, OSD-72, OSD-75, OSD-83, OSD-87, OSD-95, OSD-96, OSD-108, OSD-112, OSD-116, OSD-120, OSD-121, OSD-133, OSD-147, OSD-205, OSD-207, OSD-213, OSD-223, OSD-243, OSD-244, OSD-245, OSD-246, OSD-247, OSD-248, OSD-249
Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinementBrereton N J B, Pitre F E, Gonzalez E., (2021). Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinement, Computational and Structural Biotechnology Journal. doi.org/10.1016/j.csbj.2021.03.040OSD-191
A Longitudinal Epigenetic Aging and Leukocyte Analysis of Simulated Space Travel: The Mars-500 MissionNwanaji-Enwerem, J. C., Nwanaji-Enwerem, U., Van Der Laan, L., Galazka, J. M., Redeker, N. S., and Cardenas, A., (2020). A Longitudinal Epigenetic Aging and Leukocyte Analysis of Simulated Space Travel: The Mars-500 Mission, Cell Reports. doi.org/0.1016/j.celrep.2020.108406OSD-140
A New Era for Space Life Science: International Standards for Space Omics ProcessingRutter, L., Barker, R., Bezdan, D., Cope, H., Costes, S. V., Degoricija, L., Fisch, K. M., et al., (2020). A New Era for Space Life Science: International Standards for Space Omics Processing, Patterns. doi.org/10.1016/j.patter.2020.100148
Advancing the Integration of Biosciences Data Sharing to Further Enable Space ExplorationScott, R.T., Grigorev, K., Mackintosh, G., Gebre, S. G., Mason, C. E., Del Alto, M. E., and Costes, S. V., (2020). Advancing the Integration of Biosciences Data Sharing to Further Enable Space Exploration, Cell Reports. doi.org/10.1016/j.celrep.2020.108441
Comparative Transcriptomics Identifies Neuronal and Metabolic Adaptations to Hypergravity and Microgravity in Caenorhabditis elegansWillis, C. R. G., Szewczyk, N. J., Costes, S. V., Udranszky, I. A., Reinsch, S. S., Etheridge, T., and Conley, C. A., (2020). Comparative Transcriptomics Identifies Neuronal and Metabolic Adaptations to Hypergravity and Microgravity in Caenorhabditis elegans, iScience. doi.org/10.1016/j.isci.2020.101734OSD-41, OSD-112, OSD-113, OSD-190
Comparisons of Transcriptome Profiles from Bacillus subtilis Cells Grown in Space versus High Aspect Ratio Vessel (HARV) Clinostats Reveal a Low Degree of ConcordanceMorrison, Michael D., Nicholson, Wayne L. “Comparisons of Transcriptome Profiles from Bacillus subtilis Cells Grown in Space versus High Aspect Ratio Vessel (HARV) Clinostats Reveal a Low Degree of Concordance. Astrobiology 2020, doi.org/10.1089/ast.2020.2235OSD-31, OSD-39, OSD-14, OSD-15
Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impactda Silveira, W. A., Fazelinia, H., Rosenthal, S. B., Laiakis, E. C., Kim, M. S., Meydan, C., Kidane, Y., et al., (2020). Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact, Cell. doi.org/10.1016/j.cell.2020.11.002OSD-98, OSD-99, OSD-100, OSD-101, OSD-102, OSD-103, OSD-104, OSD-105, OSD-161, OSD-162, OSD-163, OSD-168, OSD-13, OSD-52, OSD-54, OSD-114, OSD-118, OSD-174, OSD-47, OSD-48, OSD-343
Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space ExplorationAfshinnekoo, E., Scott, R. T., MacKay, M. J., Pariset, E., Cekanaviciute, E., Barker, R., Gilroy, S., et al., (2020). Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration, Cell. doi.org/10.1016/j.cell.2020.10.050
Integrated RNA-seq Analysis Indicates Asynchrony in Clock Genes between Tissues under SpaceflightFujita, S-I, Rutter, L., Ong, Q., Muratani, M. (2020). Integrated RNA-seq Analysis Indicates Asynchrony in Clock Genes between Tissues under Spaceflight. Life 2020, 10(9), 196; doi.org/10.3390/life10090196OSD-98,, OSD-99, OSD-101, OSD-102, OSD-103, OSD-104, OSD-105, OSD-168, OSD-48
MicroRNAs (miRNAs), the final frontier: The hidden master regulators impacting biological responses in all organisms due to spaceflightVandenburg, C., Beheshti, A. (2020). MicroRNAs (miRNAs), the final frontier: The hidden master regulators impacting biological responses in all organisms due to spaceflight. The Health Risks of Extraterrestrial Environments, March 9, 2020.
NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal ModelsMcDonald, T. J., Stainforth, R., Miller, J., Cahill, T., da Silveira, W. A., Rathi, K. S., Hardiman, G., Taylor, D., Costes, S. V., Chauhan, V., Meller, R., Beheshti, A. (2020). NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers 2020, 12(2), 381; doi.org/10.3390/cancers12020381 (registering DOI).OSD-63, OSD-52, OSD-114, OSD-21, OSD-4, OSD-47, OSD-25, OSD-98, OSD-99, OSD-100, OSD-101, OSD-102, OSD-103, OSD-104, OSD-105, OSD-168, OSD-242,, OSD-161, OSD-162, OSD-163, OSD-168, OSD-61, OSD-111, OSD-80, OSD-109, OSD-73, OSD-117
NASA GeneLab: interfaces for the exploration of space omics dataBerrios D C, Galazka J, Grigorev K, Gebre S, and Costes S V, (2020). NASA GeneLab: interfaces for the exploration of space omics data, Nucleic Acids Research. doi: 10.1093/nar/gkaa887
Revamping Space-omics in EuropeMadrigal, P., Gabel, A., Villacampa, A., Manzano, A., Deane, C. S., Bezdan, D., Carnero-Diaz, E., et al., (2020). Revamping Space-omics in Europe, Cell Systems. doi.org/10.1016/j.cels.2020.10.006
RNAseq Analysis of Rodent Spaceflight Experiments Is Confounded by Sample Collection TechniquesPolo, S. L., Saravia-Butler, A. M., Boyko, V., Dinh, M. T., Chen, Y., Fogle, H., Reinsch, S. S., et al., (2020). RNAseq Analysis of Rodent Spaceflight Experiments Is Confounded by Sample Collection Techniques, iScience. doi.org/10.1016/j.isci.2020.101733OSD-47, OSD-48, OSD-49, OSD-168, OSD-235, OSD-236
Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology Spaceflight ExperimentsBarker, R., Rasmussen, K., Gilroy, S. (2020). Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology Spaceflight Experiments, Frontiers Plant Science, 2020. Mar 4;11:147. doi.org/10.3389/fpls.2020.00147. eCollection 2020.OSD-7, OSD-8, OSD-16, OSD-17, OSD-22, OSD-37, OSD-38, OSD-44, OSD-47, OSD-120, OSD-121, OSD-14, OSD-144, OSD-147, OSD-205, OSD-208, OSD-213, OSD-217, OSD-251
Validation of a New Rodent Experimental System to Investigate Consequences of Long Duration Space HabitationChoi, S.Y., Saravia-Butler, A., Shirazi-Fard, Y., Levenson-Gower, D., Stodieck, L. S., Cadena, S. M., Beege, J., Solis, S., Ronca, A., Globus, R. K. (2020). Validation of a New Rodent Experimental System to Investigate Consequences of Long Duration Space Habitation. Sci Rep 10, 2336 (2020). doi.org/10.1038/s41598-020-58898-4OSD-48
Visualizing Omics Data from Spaceflight Samples using the NASA GeneLab PlatformBerrios, D., Weitz, E., Grigorev, K., Costes, S.V., Gebre, S. G., Beheshti, A. 2020, Visualizing Omics Data from Spaceflight Samples using the NASA GeneLab Platform, EPiC Series in Computing, vol 70, pages 89–98, doi.org/10.29007/rh7n
Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space StationMorrison, D., Fajardo-Cavozos, P., Nicholson, W. L., (2019). Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. npj Microgravity 5, Article number: 1, doi.org/10.1038/s41526-018-0061-0OSD-208, OSD-210
Exploring the Effects of Spaceflight on Mouse Physiology using the Open Access NASA GeneLab Data PlatformBeheshti, A., Shirazi-Fard, Y., Choi, S., Berrios, D., Gebre, S. G., Galazaka, J. M., Costes, S.V., (2019). Exploring the Effects of Spaceflight on Mouse Physiology using the Open Access NASA GeneLab Data Platform. J. Vis. Exp.(143) e58447, doi: 10.3791/58447
GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of FYN Through Reactive Oxygen SpeciesBeheshti, A., McDonald, J. T., Miller, J., Grabham, P., Costes, S. C., (2019). GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of FYN Through Reactive Oxygen Species.Int. J. Mol. Sci,. 20(3), 661; doi.org/10.3390/ijms20030661OSD-52, OSD-109, OSD-117
GeneLab: Omics database for spaceflight experimentsRay, S., Gebre, S., Fogle, H., Berrios, D. C., Tran, P. B., Galazka, J. G., Costes, S. V., (2019). GeneLab: Omics database for spaceflight experiments. Bioinformatics, 35(10), 1753–1759, doi:10.1093/bioinformatics/bty884
Mice Exposed to Combined Chronic Low-Dose Irradiation and Modeled Microgravity Develop Long-Term Neurological SequelaeOverbey, E. G., Paul, A. M., da Silveira, W. A., Tahamic, C. G. T., Reinsch, S. S., Szewczyk, N., Stanbouly, S., Wang, C., Galazka, J. M., Mao, X. W. (2019). Mice Exposed to Combined Chronic Low-Dose Irradiation and Modeled Microgravity Develop Long-Term Neurological Sequelae. Int. J. Mol. Sci., 20(17), 4094; doi.org:10.3390/ijms20174094OSD-202
Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liverBeheshti, A., Chakravarty, K., Fogle, H., Fazelinia, H., da Silveira, W. A., Boyko, V., Polo, S. J. L., Saravia-Butler, A., Hardiman, G., Taylor, D., Galazka, J. M., Costes, S. V. (2019) Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver, Sci Rep 9, 19195 (2019) doi.org/10.1038/s41598-019-55869-2OSD-168, OSD-47, OSD-25, OSD-137
Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflightJiang, P., Green, S. J., Chlipala, G. E., Turek, F. W., Vitaterna, M. H. (2019). Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 2019, 7:113, doi.org/10.1186/s40168-019-0724-4OSD-48, OSD-168
A microRNA signature and TGF- 1 response were identified as the key master regulators for spaceflight awarenessBeheshti A., Ray S., Fogle H., Berrios D., Costes S.V. (2018). A microRNA signature and TGF- 1response were identified as the key master regulators for spaceflight awareness. PLoS ONE 13(7): e0199621, doi.org/10.1371/journal.pone.0199621OSD-25, OSD-21, OSD-63, OSD-111, OSD-4, OSD-61, OSD-48
FAIRness and Usability for Open-access Omics Data SystemsBerrios, D.C., Beheshti, A., Costes, S. V., (2018) FAIRness and Usability for Open-access Omics Data Systems, AMIA Annu Symp Proc. Dec 5;2018:232-241. eCollection 2018.
Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case studyBeheshti A., Cekanaviciute, E., Smith, D. J., Costes, S. V., (2018). Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study. Scientific Reports 8, Article number: 4191.OSD-21, OSD-111, OSD-25, OSD-63, OSD-324
Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial “spaceflight response”Morrison, M., Nicholson, W. L., (2018). Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial “spaceflight response.” Scientific Reports8, Article number: 14403OSD-185, OSD-145, OSD-138, OSD-39, OSD-31, OSD-15, OSD-11
NASA GeneLab Project: Bridging Space Radiation Omics with Ground StudiesBeheshti, A., Miller, J., Kidane, Y., Berrios, D., Gebre, S.G., Costes, S.V., (2018) NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies. rrj: 189(6), 553-559; doi.org/10.1667/RR15062.1
Validation of methods to assess the immunoglobulin gene repertoire in tissues obtained from mice on the international space stationRettig, T. A., Ward, C., Pecaut, M. J., Chapes, S. K. (2017). Validation of methods to assess the immunoglobulin gene repertoire in tissues obtained from mice on the international space station. Gravitational and Space Research: publication of the American Society for Gravitational and Space Research, 5(1), 2-23.OSD-48, OSD-47, OSD-141

Original Publications – 122

TitleDescriptionDatasets
Exposure to elevated relative humidity in laboratory chambers alters fungal gene expression in dust from the International Space Station (ISS)Balasubrahmaniam N, Nastasi N, Hegarty B, Horack J M, Meyer M E, Haines S R, Dannemiller K C (2025). Exposure to elevated relative humidity in laboratory chambers alters fungal gene expression in dust from the International Space Station (ISS), Scientific Reports. https://doi.org/10.1038/s41598-025-09534-6OSD-701
Neuroinflammatory signaling and immune cell infiltration differ in brains of rats exposed to space radiation and social isolationAdkins A M, Luyo Z M, Boden A F, Heerbrandt R S, Britten R A, Wellman L L, Sanford L D. Neuroinflammatory signaling and immune cell infiltration differ in brains of rats exposed to space radiation and social isolation, Life. https://doi.org/10.3390/life15050747
Rotifers in space: transcriptomic response of the bdelloid rotifer Adineta vaga aboard the International Space StationMoris V C, Bruneau L, Berthe J, Coos R, Baselet B, Heuskin A C, Caplin N, et al (2025). Rotifers in space: transcriptomic response of the bdelloid rotifer Adineta vaga aboard the International Space Station, BM Biology. https://doi.org/10.1186/s12915-025-02272-1OSD-824
Simulated microgravity triggers a membrane adaptation to stress in E. coli REL606Lozzi B, Adepoju L, Espinoza J L, Padgen M, Parra M, Ricco A, Castro-Wallace S, et al (2025). Simulated microgravity triggers a membrane adaptation to stress in E. coli REL606, BMC Microbiology. https://doi.org/10.1186/s12866-025-04064-7OSD-728
The Effect of Red-rich and Blue-rich Lighting on the Microbiome of a Tomato Crop Grown Under International Space Station Conditions of High Humidity and Elevated CO2Spern C J, Hummerick M E, Khodadad C L M, Morales C, Dixit A R, Spencer L E, Mitchell C, et al (2025). The Effect of Red-rich and Blue-rich Lighting on the Microbiome of a Tomato Crop Grown Under International Space Station Conditions of High Humidity and Elevated CO2, NASA Technical Reports Server (NTRS).OSD-766
Impact of simulated microgravity on the growth and proteomicprofile of Enterobacter cloacaeOcampo J, White R E, Ferraro M J, Rice K C, (2025). Impact of simulated microgravity on the growth and proteomicprofile of Enterobacter cloacae, Microbiology Spectrum. doi: 10.1128/spectrum.02446-24OSD-788
37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sitesCahill R, Blaber E A, Juran C M, Cheng-Campbell M, Alwood, J S, Shirazi-Fard Y, Almeida E A C, (2025). 37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sites, PLoS One. doi: 10.1371/journal.pone.0317307OSD-804
The International Space Station has a unique and extreme microbial and chemical environment driven by use patternsSalido R A, Zhao H N, McDonald D, Mannochio-Russo H, Zuffa S, Oles R E, Aron A T, et al (2025). The International Space Station has a unique and extreme microbial and chemical environment driven by use patterns, Cell. https://doi.org/10.1016/j.cell.2025.01.039OSD-734
Effects of Space Flight on Inflammasome Activation in the Brain of MiceRoy U, Hadad R, Rodriguez A A, Saju A, Roy D, Gil M, Keane R W, et al (2025). Effects of Space Flight on Inflammasome Activation in the Brain of Mice, Cells. https://doi.org/10.3390/cells14060417OSD-738, OSD-751, OSD-752, EDA
The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasuresYun S, Kiffer F C, Bancroft G L, Guzman C S, Soler I, Haas H A, Shi R, et al (2025). The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasures, Journal of Neurochemistry. https://doi.org/10.1111/jnc.16225
Validated space radiation exposure predictions from earth to mars during Artemis-ISlaba T C, Rahmanian S, George S, Laramore D, Norbury J W, Werneth C M, Zeitlin C, (2025). Validated space radiation exposure predictions from earth to mars during Artemis-I, Microgravity. https://doi.org/10.1038/s41526-025-00459-yRadLab
Galactic cosmic ray environment predictions for the NASA BioSentinel Mission, part 2:Post-mission validationRahmanian S, Slaba T C, George S, Braby L A, Bhattacharya S, Straume T, Santa Maria S R, (2025). Galactic cosmic ray environment predictions for the NASA BioSentinel Mission, part 2:Post-mission validation, Life Sciences in Space Research. https://doi.org/10.1016/j.lssr.2024.10.006RadLab
Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS.Parafati M, Thwin Z, Malany L K, Coen P M, Malany S, (2025). Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS, bioRxiv. https://doi.org/10.1101/2025.01.26.634580
Non-DNA radiosensitive targets that initiate persistent behavioral deficits in rats exposed to space radiationStraume T, Mora A M, Brown J B, Bansal I, Rabin B M, Braby L A, Wyrobek A J, (2024). Non-DNA radiosensitive targets that initiate persistent behavioral deficits in rats exposed to space radiation, Life Sciences in Space Research. https://doi.org/10.1016/j.lssr.2024.12.003OSD-490, OSD-492, OSD-495, OSD-626
Artificial Gravity Attenuates the Transcriptomic Response to Spaceflight in the Optic Nerve and RetinaKremsky I, Pergerson R, Justinen S, Stanbouly S, Willey J, Fuller C A, Takahashi S, et al (2024). Artificial Gravity Attenuates the Transcriptomic Response to Spaceflight in the Optic Nerve and Retina, International Journal of Molecular Science. doi: 10.3390/ijms252212041OSD-758, OSD-759
Spatially resolved multiomics on the neuronal effects induced by spaceflight in miceMasarapu Y, Cekanaviciute E, Andrusivova Z, Westholm J O, Bjorklund A, Fallegger R, Badia-i-Mompel P, et al (2024). Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice, nature communications.
https://doi.org/10.1038/s41467-024-48916-8
OSD-352
Light has a principal role in the physiological adaptation of plants to the spaceflight environmentZhou M, Paul A-L, Ferl R, (2024). Light has a principal role in the physiological adaptation of plants to the spaceflight environment, ResearchSquare.
https://doi.org/10.21203/rs.3.rs-4085160/v1
OSD-678, OSD-120
Spaceflight-induced contractile and mitochondrial dysfunctionin an automated heart-on- a-chip platformMair D B, Tsui J H, Higashi T, Koenig P, Dong Z, Chen J F, Meir J U, et al, (2024). Spaceflight-induced contractile and mitochondrial dysfunctionin an automated heart-on- a-chip platform, Proc Natl Acad Sci. doi: 10.1073/pnas.2404644121OSD-737
Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space StationNastasi N, Bope A, Meyer M E, Horack J M, Dannemiller K C, (2024). Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station, Microbiome. https://doi.org/10.1186/s40168-024-01864-3OSD-694
Modeling cellular responses to serum and vitamin D in microgravity using a human kidney microphysiological systemLidberg K A, Jones-Isaac K, Yang J, Bain J, Wang L, MacDonald J W, Bammler T K, et al, (2024). Modeling celluar responses to serum and vitamin D in microgravity using a human kidney microphysiological system, npj microgravity. https://doi.org/10.1038/s41526-024-00415-2OSD-516
Cosmic kidney disease: An integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunctionSiew K, Nestler K A, Nelson C, D’Ambrosio V, Zhong C, Li Z, Grillo A, et al, (2024). Cosmic kidney disease: An integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction, Nature Communications. doi: 10.1038/s41467-024-49212-1OSD-72, OSD-102, OSD-163, OSD-212, OSD-249, OSD-250, OSD-253, OSD-336, OSD-342, OSD-457, OSD-462, OSD-465, OSD-466, OSD-513, OSD-530, OSD-532, OSD-571, OSD-575, OSD-706, OSD-707, OSD-708, OSD-709, OSD-710, OSD-712
Direct RNA sequencing of astronaut blood reveals spaceflight-associated m6A increases and hematopoietic transcriptional responsesGrigorev K, Nelson T M, Overbey E G, Hourebi N, Kim J, Najjar D, Damle N, et al (2024). Direct RNA sequencing of astronaut blood reveals spaceflight-associated m6A increases and hematopoietic transcriptional responses, Nature Communications. doi: 10.1038/s41467-024-48929-3OSD-569
Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflightTierney B T, Kim J, Overbey E G, Ryon K A, Foox J, Sierra M A, Bhattacharya C, et al (2024). Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight, Nature Microbiology. doi: 10.1038/s41564-024-01635-8OSD-570, OSD-572, OSD-573, OSD-630
Microbial adaptation to spaceflight is correlated with bacteriophage-encoded functionsIrby I and Broddrick J, (2024). Microbial adaptation to spaceflight is correlated with bacteriophage-encoded functions, Nature Communications. doi: 10.1038/s41467-023-42104-wOSD-582
Molecular and physiologic changes in the SpaceX Inspiration4 civilian crewJones C W, Overbey E G, Lacombe J, Ecker A J, Meydan C, Ryon K, Tierney, B, et al (2024). Molecular and physiologic changes in the SpaceX Inspiration4 civilian crew, Nature. doi: 10.1038/s41586-024-07648-xOSD-569, OSD-570, OSD-571, OSD-572, OSD-573, OSD-574, OSD-575, OSD-630, OSD-656, OSD-687
Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment responseHusna N, Aiba T, Fujita S, Saito Y, Shiba D, Kudo T, Takahashi S, et al (2024). Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment response, Nature Communications. doi: 10.1038/s41467-023-41995-zOSD-530, OSD-532
Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflightHouerbi N, Kim J, Overbey E G, Batra R, Schweickart A, Patras L, Lucotti S, et al (2024). Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight, Nature Communications. doi: 10.1038/s41467-024-48841-wOSD-530, OSD-569, OSD-571
Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflightKim J, Tierney B T, Overbey E G, Dantas E, Fuentealba M, Park J, Narayanan S A, et al (2024). Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight, Nature Communications. doi: 10.1038/s41467-024-49211-2OSD-530, OSD-570, OSD-575
Space radiation damage rescued by inhibition of key spaceflight-associated miRNAsMcDonald J T, Kim J, Farmerie L, Johnson M L, Trovao N S, Arif S, Siew K, et al (2024). Space radiation damage rescued by inhibition of key spaceflight-associated miRNAs, Nature Communications. doi: 10.1038/s41467-024-48920-yOSD-334, OSD-335, OSD-336, OSD-337, OSD-530, OSD-570, OSD-577
Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflightPark J, Overbey E G, Narayanan S A, Kim J, Tierney B T, Damle N, Najjar D, et al (2024). Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight, Nature Communications. doi: 10.1038/s41467-024-48625-2OSD-570, OSD-574
Spatiotemporal expression and control of haemoglobin in spaceBorg J, Loy C, Kim J, Buhagiar A, Chin C, Damle N, De Valminck I, et al (2024). Spatiotemporal expression and control of haemoglobin in space, Nature Communications. doi: 10.1038/s41467-024-49289-8OSD-530, OSD-570
Telomeric RNA (TERRA) increases in response to spaceflight and high-altitude climbingAl-Turki T M, Maranon D G, Nelson C B, Lewis A M, Luxton J J, Taylor L E, Altina N, et al (2024). Telomeric RNA (TERRA) increases in response to spaceflight and high-altitude climbing, Communications Biology. doi: 10.1038/s42003-024-06014-xOSD-569, OSD-570
The Space Omics and Medical Atlas (SOMA) and international astronaut biobankOverbey E G, Kim J, Tierney B T, Park J, Houerbi N, Lucaci A G, Medina S G, et al (2024). The Space Omics and Medical Atlas (SOMA) and international astronaut biobank, Nature. doi: 10.1038/s41586-024-07639-yOSD-569, OSD-570, OSD-571, OSD-572, OSD-573, OSD-574, OSD-575, OSD-630, OSD-656
Drosophila parasitoids go to space: Unexpected effects of spaceflight on hosts and their parasitoidsChou J, Ramroop J R, Saravia-Butler A M, Wey B, Lera M P, Torres M L, Heavner M E, et al (2024). Drosophila parasitoids go to space: Unexpected effects of spaceflight on hosts and their parasitoids, iScience. doi.org/10.1016/j.isci.2023.108759OSD-588, OSD-609, OSD-610
Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflightGarcia-Medina J S, Sienkiewicz K, Narayanan S A, Overbey E G, Grigorev K, Ryon K A, Burke M, et al (2024). Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight, Precision Clinical Medicine. DOI: 10.1093/pcmedi/pbae007OSD-570, OSD-572, OSD-573, OSD-630
Sexual dimorphism during integrative endocrine and immune responses to ionizing radiation in miceBurke M, Wong K, Talyansky Y, Mhatre S D, Mitchell C, Juran C M, Olson, et al (2024). Sexual dimorphism during integrative endocrine and immune responses to ionizing radiation in mice, Scientific Reports. doi: 10.1038/s41598-023-33629-7OSD-566
Single-molecule long-read methylation profiling reveals regional DNA methylation regulated by Elongator Complex Subunit 2 in Arabidopsis roots experiencing spaceflightZhou M, Riva A, Gauthier M P L, Kladde M P, Ferl R J, Paul A L, (2024). Single-molecule long-read methylation profiling reveals regional DNA methylation regulated by Elongator Complex Subunit 2 in Arabidopsis roots experiencing spaceflight, Biology Direct. doi.org/10.1186/s13062-024-00476-zOSD-625
Spaceflight effects on human vascular smooth muscle cell phenotype and functionScotti M M, Wilson B K, Bubenik J L, Yu F, Swanson M S, Allen J B, (2024). Spaceflight effects on human vascular smooth muscle cell phenotype and function, npj microgravity. doi.org/10.1038/s41526-024-00380-wOSD-635
Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfacesFlores P, McBride S A, Galazka J M, Varanasi K K, Zea L (2023). Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces, npj Microgravity. doi: 10.1038/s41526-023-00316-wOSD-554, OSD-627
Brachypodium distachyon Seedlings Display Accession-Specific Morphological and Transcriptomic Responses to the Microgravity Environment of the International Space StationSu S, Levine H, Masson P H, (2023). Brachypodium distachyon seedlings display accession-specific morphological and transcriptomic responses to the microgravity environment of the International Space Station, Life. https://doi.org/10.3390/life13030626OSD-375
Glycome profiling and immunohistochemistry uncover changes in cell walls of Arabidopsis thaliana roots during spaceflightNakashima J, Pattathil S, Avci U, Chin S, Sparks J A, Hahn M G, Gilroy S, et al (2023). Glycome profiling and immunohistochemistry uncover changes in cell walls of Arabidopsis thaliana roots during spaceflight, npj Microgravity. doi: 10.1038/s41526-023-00312-0OSD-615
Simulated galactic cosmic ray exposure activates dose-dependent DNA repair response and down regulates glucosinolate pathways in arabidopsis seedlingsDixit A R, Meyers A D, Richardson B, Richards J T, Richards S E, Neelam S, Levine H G, et al (2023). Simulated galactic cosmic ray exposure activates dose-dependent DNA repair response and down regulates glucosinolate pathways in arabidopsis seedlings, Frontiers in Plant Science. doi: 10.3389/fpls.2023.1284529OSD-658
Specific host metabolite and gut microbiome alterations are associated with bone loss during spaceflightBedree J K, Kerns K, Chen T, Lima B P, Liu G, Ha P, Shi J, et al (2023). Specific host metabolite and gut microbiome alterations are associated with bone loss during spaceflight, Cell Reports. doi: 10.1016/j.celrep.2023.112299OSD-417
Transcriptomic dynamics in the transition from ground to space are revealed by Virgin Galactic human-tended suborbital spaceflightFerl R J, Zhou M, Strickland H F, Haveman N J, Callaham J B, Bandla S, Ambriz D, et al (2023). Transcriptomic dynamics in the transition from ground to space are revealed by Virgin Galactic human-tended suborbital spaceflight, npj Microgravity. doi.org/10.1038/s41526-023-00340-wOSD-624
Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital SpaceflightHaveman N J, Zhou M, Callaham J, Strickland H F, Houze D, Manning-Roach S, Newsham G, et al, (2023). Utilizing the KSC Fixation Tube to conduct human-tended plant biology experiments on a suborbital spaceflight, Life. doi.org/10.3390/life12111871OSD-565
Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogasterMhatre S D, Iyer J, Petereit J, Dolling-Boreham R M, Tyryshkina A, Paul A M, Gilbert R, et al (2022). Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster, Cell Reports. doi.org/10.1016/j.celrep.2022.111279OSD-514
Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinumClary J L, France C S, Lind K, Shi R, Alexander J S, Richards J T, Scott R S, et al, (2022). Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinum, Frontiers. doi.org/10.3389/frspt.2022.1032610
Draft Genome Sequences of Fungi Isolated from Mars 2020 Spacecraft Assembly FacilitiesChander A M, Singh N K, Simpson A C, Seuylemezian A, Mason C E, Venkateswaran K (2022). Draft Genome Sequences of Fungi Isolated from Mars 2020 Spacecraft Assembly Facilities, Microbiology Resource Announcements. doi.org/10.1128/mra.00464-22OSD-497, OSD-400
Genomic Characterization of the Titan-like Cell Producing Naganishia tulchinskyi, the First Novel Eukaryote Isolated from the International Space StationBijlani S, Parker C, Singh N K, Sierra M A, Foox J, Wang C C C, Mason C E, and Venkateswaran K, (2022). Genomic Characterization of the Titan-like Cell Producing Naganishia tulchinskyi, the First Novel Eukaryote Isolated from the International Space Station, Journal of Fungi. doi.org/10.3390/jof8020165OSD-290
Metabolic modeling of the International Space Station microbiome reveals key microbial interactionsKumar R K, Singh N K, Balakrishnan S, Parker C W, Raman K, Venkateswaran K, (2022). Metabolic modeling of the International Space Station microbiome reveals key microbial interactions, Microbiome. doi.org/10.1186/s40168-022-01279-yOSD-69
Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space StationUrbaniak C, Morrison M D, Thissen J B, Karouia F, Smith D J, Mehta S, Jaing C, et al (2022). Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station, Microbiome. doi.org/10.1186/s40168-022-01293-0OSD-252
Mouse genomic associations with in vitro sensitivity to simulated space radiationCekanaviciute E, Tran D, Nguyen H, Macha A L, Pariset E, Langley S, Babbi G, et al, (2022). Mouse genomic associations with in vitro sensitivity to simulated space radiation, Life Sciences in Space Research. doi.org/10.1016/j.lssr.2022.07.006OSD-366
Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar explorationPaul A L, Elardo S M, and Ferl R, (2022). Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration, Communications Biology. doi.org/10.1038/s42003-022-03334-8
Quantitative proteomic analytic approaches to identify metabolic changes in the medial prefrontal cortex of rats exposed to space radiationLaiakis E C, Pinheiro M, Nguyen T, Nguyen H, Beheshti A, Dutta S M, Russell W K, et al (2022). Quantitative proteomic analytic approaches to identify metabolic changes in the medial prefrontal cortex of rats exposed to space radiation, Frontiers in Physiology. doi.org/10.3389/fphys.2022.971282OSD-505
Red Light Enhances Plant Adaptation to Spaceflight and Mars g-LevelsMedina F J, Manzano A, Herranz R, and Kiss J Z (2022). Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels, Life. doi.org/10.3390/life12101484OSD-251, OSD-314, OSD-346
Spaceflight analogue culture enhances the host-pathogen interaction between Salmonella and a 3-D biomimetic intestinal co-culture modelBarrila J, Yang J, Franco Meléndez KP, Yang S, Buss K, Davis TJ, Aronow BJ, et al, (2022). Spaceflight analogue culture enhances the host-pathogen interaction between Salmonella and a 3-D biomimetic intestinal co-culture model, Front Cell Infect Microbiology. doi.org/10.3389/fcimb.2022.705647OSD-277
The Maleth program: Malta’s first space mission discoveries on the microbiome of diabetic foot ulcersGatt C, Tierney B T, Madrigal P, Mason C E, Beheshti A, Telzerow A, Benes V, et al, (2022). The Maleth program: Malta’s first space mission discoveries on the microbiome of diabetic foot ulcers, Heliyon. doi.org/10.1016/j.heliyon.2022.e12075OSD-487
An Analysis of the Effects of Spaceflight and Vaccination on Antibody Repertoire DiversityRettig T A, Tan J C, Nishiyama N C, Chapes S K, Pecaut M J, (2021). An Analysis of the Effects of Spaceflight and Vaccination on Antibody Repertoire Diversity, ImmunoHorizons. doi: https://doi.org/10.4049/immunohorizons.2100056OSD-141, OSD-164, OSD-201, OSD-214
Cell spinpods are a simple inexpensive suspension culture device to deliver fuid shear stress to renal proximal tubular cellsHammond T G, Nislow C, Christov I C, Batuman V, Nagrani P P, Barazandeh M, Upadhyay R, et al (2021). Cell spinpods are a simple inexpensive suspension culture device to deliver fuid shear stress to renal proximal tubular cells, Scientific Reports. doi.org/10.1038/s41598-021-00304-8
Diagnosing an Opportunistic Fungal Pathogen on Spaceflight-Grown Plants Using the MinION Sequencing PlatformHaveman N J, Schuerger A C, (2021). Diagnosing an Opportunistic Fungal Pathogen on Spaceflight-Grown Plants Using the MinION Sequencing Platform, Astrobiology. doi: 10.1089/ast.2021.00491
Draft Genome Sequences of Aspergillus and Penicillium Species Isolated from the International Space Station and Crew Resupply Vehicle CapsuleBlachowicz, A., Singh, N. K., Wood, J. M., Debieu, M., O’Hara, N. B., Mason, C. E., Venkateswarana, K., (2021). Draft Genome Sequences of Aspergillus and Penicillium Species Isolated from the International Space Station and Crew Resupply Vehicle Capsule, Microbiology Resource Announcements. doi.org/ 10.1128/MRA.01398-20OSD-350
Draft genome sequences of heat shock-tolerant microbes isolated from a spacecraft assembly facility.Wood J M, Peres J B, Bateh J, Singh N K, Aronson H S, Hendrickson R, Mason C E, et al (2021). Draft genome sequences of heat shock-tolerant microbes isolated from a spacecraft assembly facility, Microbiology Resource Announcements. doi.org/10.1128/MRA.00653-21
Draft Genome Sequences of Various Bacterial Phyla Isolated from the International Space StationSimpson A C, Urbaniak C, Singh N K, Wood J M, Debieu M, O’Hara N B, Mason C E, (2021). Draft Genome Sequences of Various Bacterial Phyla Isolated from the International Space Station, Microbiology Resource Announcements. DOI: 10.1128/MRA.00214-21OSD-361
Effects of Low Dose Space Radiation Exposures on the Splenic MetabolomeLaiakis, E. C., Shuryak, I., Deziel, A., Wang, Y., Barnette, B. L., Yu, Y., Ullrich, R. L., et al., (2021). Effects of Low Dose Space Radiation Exposures on the Splenic Metabolome, International Journal of Molecular Sciences. doi.org/10.3390/ijms22063070
Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella TyphimuriumBarrila, J., Sarker, S. F., Hansmeier, N., Yang, S., Buss, K., Briones, N., Park, J., Davis, R. R., Forsyth, R. J., Ott, C. M., Sato, K., Kosnik, C., Yang, A., Shimoda, C., Rayl, N., Ly, D., Landenberger, A., Wilson, S. D., Yamazaki, N., Steel, J., Montano, C., Halden, R.U., Cannon, T., Castro-Wallace, S. L. and Nickerson, C. A., (2021). Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium, Microgravity. doi.org/10.1038/s41526-021-00136-wOSD-323
Evaluating the lettuce metatranscriptome with MinION sequencing for future spaceflight food production applicationsHaveman N J, Khodadad C L M, Dixit A R, Louyakis A S, Massa G D, Venkateswaran K, and Foster J S, (2021). Evaluating the lettuce metatranscriptome with MinION sequencing for future spaceflight food production applications, npj Microgravity. doi.org/10.1038/s41526-021-00151-x
Long-read sequencing reveals increased occurrence of genomic variants and adenosine methylation in Bacillus pumilus SAFR-032 after long-duration flight exposure onboard the International Space StationWaters S M, Ledford S M, Wacker A, Verma S, Serda B, McKaig J, Varelas J, et al, (2021). Long-read sequencing reveals increased occurrence of genomic variants and adenosine methylation in Bacillus pumilus SAFR-032 after long-duration flight exposure onboard the International Space Station, International Journal of Astrobiology. doi.org/10.1017/S1473550421000343
Methylobacterium ajmalii sp. nov., Isolated From the International Space StationBijlani, S., Singh, N. K., Eedara, V. V. R., Podile, A. R., Mason, C. E., Wang, C. C. C., and Venkateswaran, K., (2021). Methylobacterium ajmalii sp. nov., Isolated From the International Space Station, Frontiers in Microbiology. doi.org/10.3389/fmicb.2021.639396OSD-300
Persistence of Escherichia coli in the microbiomes of red Romaine lettuce (Lactuca sativa cv. ‘Outredgeous’) and mizuna mustard (Brassica rapa var. japonica) – does seed sanitization matter?Dixit A R, Khodadad C L M, Hummerick M E, Spern C J, Spencer L E, Fischer J A, Curry A B, et al (2021). Persistence of Escherichia coli in the microbiomes of red Romaine lettuce (Lactuca sativa cv. ‘Outredgeous’) and mizuna mustard (Brassica rapa var. japonica) – does seed sanitization matter?, BMC Microbiology. doi.org/10.1186/s12866-021-02345-5
Spaceflight studies identify a gene encoding an intermediate filament involved in tropism pathwaysShymanovicha T, Vandenbrink J P, Herranz R, Medina F J, Kiss J Z, (2021). Spaceflight studies identify a gene encoding an intermediate filament involved in tropism pathways, Plant Physiology and Biochemistry. doi.org/10.1016/j.plaphy.2021.12.039OSD-251
Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space StationHummerick M E, Khodadad C L M, Dixit A R, Spencer L E, Maldonado-Vasquez G J, Gooden J L, Spern C J, et al (2021). Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station, Life. doi.org/10.3390/life11101060
The Impact of Hindlimb Suspension on the Rat Eye: A Molecular and Histological Analysis of the RetinaTheriot C A, Chevez-Barrios P, Loughlin T, Beheshti A, Mercaldo N D, Zanello S B, (2021). The Impact of Hindlimb Suspension on the Rat Eye: A Molecular and Histological Analysis of the Retina, Gravitational and Space Research. doi.org/10.2478/gsr-2021-0007
Approaches for Surveying Cosmic Radiation Damage in Large Populations of Arabidopsis thaliana Seeds – Antarctic Balloons and Particle BeamsCalifar, B., Tucker, R., Cromie, J., Sng, N., Schmitz, R. A., Callaham, J. A., Barbazuk, B., Paul, A-L, Ferl, R. J. (2020). Approaches for Surveying Cosmic Radiation Damage in Large Populations of Arabidopsis thaliana Seeds – Antarctic Balloons and Particle Beams, Gravitational and Space Research 6:2, doi.org/10.2478/gsr-2018-0010OSD-210, OSD-210
Beyond Low-Earth Orbit: Characterizing Immune and microRNA Differentials following Simulated Deep Spaceflight Conditions in MicePaul, A, M., Cheng-Campbell, M., Blaber, E. A., Anand. S., Bhattacharya, S., Zwart, S. R., Crucian, B. E., et al., (2020). Beyond Low Earth Orbit: Characterizing the Immune Profile Following Simulated Spaceflight Conditions for Deep Space Missions, iScience. doi.org/10.1016/j.isci.2020.101747OSD-336
Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure DevelopmentMalkani, S., Chin, C. R., Cekanaviciute. E., Mortreux, M., Okinula, H., Tarbier, M., Schreurs, A. S., et al., (2020). Circulating miRNA Signature Predicts and Rescues Health Risks Associated with Spaceflight, Cell Reports. doi.org/10.1016/j.celrep.2020.108448OSD-334, OSD-335, OSD-336, OSD-337
Competitive Growth Assay of Mutagenized Chlamydomonas reinhardtii Compatible With the International Space Station Veggie Plant Growth ChamberZhang, J., Müller, B., Tyre, K. N., Hersh, H. L., Bai, F., Hu, Y., Resende, M., Jr, Rathinasabapathi, B., Settles, A. M. (2020). Competitive Growth Assay of Mutagenized Chlamydomonas reinhardtii Compatible With the International Space Station Veggie Plant Growth Chamber. Frontiers in plant science, 11, 631. doi.org/10.3389/fpls.2020.00631OSD-265
Draft Genome Sequences of Enterobacteriales Strains Isolated from the International Space StationBharadwaj, A.R., Daudu. R., Singh, N.K., Wood, J.M., Debieu, M., O’Hara, N.B., Karouia, F., Mason, C.E., Venkateswaran, K. (2020) Draft Genome Sequences of Enterobacteriales Strains Isolated from the International Space Station. Microbiology Resource Announcement – 9:e00817-20. doi.org/10.1128/MRA.00817-20.OSD-302, OSD-311
Draft Genome Sequences of Sphingomonas Species Associated with the International Space StationBijlani, S., Singh, N.K., Mason, C.E., Wang, C.C.C., Venkateswaran, K., (2020). Draft genome sequences of Sphingomonas species associated with the International Space Station. Microbiology Resource Announcement, 9:e00578-20. doi.org/10.1128/MRA.00578-20.OSD-298
Draft Genome Sequences of Tremellomycetes Strains Isolated from the International Space StationBijlani, S., Singh, N. K., Mason, C. E., Wang, C. C. C., Venkateswaran, K. (2020). Draft Genome Sequences of Tremellomycetes Strains Isolated from the International Space Station. Microbiology Resource Announcements, 9, 26, e00504-20.OSD-290
LET-Dependent Low Dose and Synergistic Inhibition of Human Angiogenesis by Charged Particles: Validation of miRNAs that Drive InhibitionWuu, Y., Hu, B., Okunola, H., Paul, A. M., Blaber, E. A., Cheng-Campbell, M., Beheshti, A., et al., (2020). LET-Dependent Low Dose and Synergistic Inhibition of Human Angiogenesis by Charged Particles: Validation of miRNAs that Drive Inhibition, iScience. doi.org/10.1016/j.isci.2020.101771OSD-334, OSD-336
Microbiological and nutritional analysis of lettuce crops grown on the International Space StationKhodadad, C. L., Hummerick, M. E., Spencer, L. E., Dixit, A. R., Richards, J. T., Romeyn, M. W., Smith, T. M., Wheeler, R. M., Massa, G. D. (2020) Microbiological and Nutritional Analysis of Lettuce Crops Grown on the International Space Station. Front Plant Sci. 2020 Mar 6;11:199. doi: 10.3389/fpls.2020.00199.OSD-267, OSD-268, GLDS:269
Prolonged Exposure to Microgravity Reduces Cardiac Contractility and Initiates Remodeling in DrosophilaWalls, S., Diop, S., Birse, R., Elmen, L., Gan, Z., Kalvakuri, S., Pineda, S., et al., (2020). Prolonged Exposure to Microgravity Reduces Cardiac Contractility and Initiates Remodeling in Drosophila, Cell Reports. doi.org/10.1016/j.celrep.2020.108445OSD-347
Root skewing-associated genes impact the spaceflight response of Arabidopsis thalianaCalifar, B., Sng, N.J., Zupanska, A., Paul, A-L, Ferl, R.J. (2020). Root skewing-associated genes impact the spaceflight response of Arabidopsis thaliana. Frontiers in Plant Science 2020, 11:239, doi.org/10.3389/fpls.2020.00239OSD-218
Sierra Nevada Sweep: Metagenomic Measurements of Bioaerosols Vertically Distributed Across the TroposphereJaing, C., Thissen, J., Morrison, M. et al. (2020) Sierra Nevada Sweep: Metagenomic Measurements of Bioaerosols Vertically Distributed Across the Troposphere. Sci Rep 10, 12399. doi.org/10.1038/s41598-020-69188-4OSD-256
Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analysesKruse, C, P. S., Meyers, A. D., Basu, P., Hutchinson, S., Luisee, D. R., Wyatt, S. E., (2020). Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses. BCM Plant Biology, 2020; 20:237. doi.org/10.1186/s12870-020-02392-6OSD-38
The Importance of Earth Reference Controls in Spaceflight -Omics Research: Characterization of Nucleolin Mutants from the Seedling Growth ExperimentsManzano, A., Villacampa, A., Saez-Vasquez, J., Kiss, J. Z., Medina, F. J., and Herranz, R., (2020). The Importance of Earth Reference Controls in Spaceflight -Omics Research: Characterization of Nucleolin Mutants from the Seedling Growth Experiments, iScience. doi.org/10.1016/j.isci.2020.101686OSD-313
The influence of spaceflight on the astronaut salivary microbiome and the search for a microbiome biomarker for viral reactivationUrbaniak, C., Lorenzi, H., Thissen, J. et al. The influence of spaceflight on the astronaut salivary microbiome and the search for a microbiome biomarker for viral reactivation. Microbiome 8, 56 (2020). doi.org/10.1186/s40168-020-00830-zOSD-280
Articular cartilage and sternal fibrocartilage respond differently to extended microgravityFitzgerald, J., Endicott, J., Hansen, U., & Janowitz, C. (2019). Articular cartilage and sternal fibrocartilage respond differently to extended microgravity. NPJ Microgravity, 5, 3. doi:10.1038/s41526-019-0063-6OSD-232
Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell cultureKamal, K. Y., Herranz, R., van Loon, J., & Medina, F. J. (2019). Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. Plant Cell Environ, 42(2), 480-494. doi:10.1111/pce.OSD-144
Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravityKamal, K. Y., Herranz, R., van Loon, J., Medina, F. J., Herranz (2019). Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated gravity. ScienceDirect, doi.org/10.1016/j.ygeno.2019.01.007OSD-144
Effects of skeletal unloading on the bone marrow antibody repertoire of tetanus toxoid and/or CpG treated C57BL/6J miceRettig, T.A., Nishiyama, N.C., Pecaut, M.J., Chapes, S.K., (2019). Effects of skeletal unloading on the bone marrow antibody repertoire of tetanus toxoid and/or CpG treated C57BL/6J mice. Life Sciences in space Research 22:16, doi.org/10.1016/j.lssr.2019.06.001OSD-214, OSD-201
Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thalianaZhou, M., Sng, N. J., LeFrois, C. E., Paul, A-L, Ferl, R. J., (2019). Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 20:205, doi:10.1186/s12864-019-5554-zOSD-217
Establishing Standard Protocols for Bacterial Culture in Biological Research in Canisters (BRIC) HardwareMorrison, M.D., Fajardo-Cavazos, P., Nicholson, W., (2019). Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. npj Microgravity 5, Article number:1OSD-185, OSD-145, OSD-138
HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to SpaceflightZupanska, A. K., LeFrois, C., Ferl, R. J., Paul, A-L. (2019). HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Int J Mol Sci, Jan 17;20(2). pii: E390. doi: 10.3390/ijms20020390.OSD-205
RNA seq analyses of Arabidopsis thaliana seedlings after exposure to blue light phototropic stimuli in microgravityHerranz, R., Vandenbrink, J.P., Villacampa, A., Manzano, A., Poehlman, W., Feltus, F. A., Kiss, J. Z., Medina, M. J. (2019), RNA seq analyses of Arabidopsis thaliana seedlings after exposure to blue light phototropic stimuli in microgravity, doi.org/10.1002/abj2.1384OSD-251
Spaceflight-induced alternative splicing during seedling development in Arabidopsis thalianaBeisel, N.S., Noble, J., Barbazuk, B. W., Paul, A-L., Ferl, R. J., (2019). Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana. npj Microgravity 5:9, doi:10.1038/s41526-019-0070-7OSD-218
Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflightChoi, W. G., Barker, R. J., Kim, S. H., Swanson, S. J., & Gilroy, S. (2019). Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight. Am J Bot, 106(1), 123-136. doi:10.1002/ajb2.1223OSD-37
Airborne Bacteria in Earth’s Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results from a New NASA Aircraft Bioaerosol Collector (ABC)Smith, D. J., Ravichandar, J. D., Jain, S., Griffin, D. W., Yu, H., Tan, Q., . . . McGrath, J. (2018). Airborne Bacteria in Earth’s Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results From a New NASA Aircraft Bioaerosol Collector (ABC). Front Microbiol, 9, 1752. doi:10.3389/fmicb.2018.01752OSD-170
Characterization of the naive murine antibody repertoire using unamplified high-throughput sequencingRettig, T. A., Ward, C., Bye, B. A., Pecaut, M. J., & Chapes, S. K. (2018). Characterization of the naive murine antibody repertoire using unamplified high-throughput sequencing. PLoS One, 13(1), e0190982. doi:10.1371/journal.pone.0190982OSD-141
Comparing RNA Seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflightKrishnamurthy, A., Ferl, R. J., Paul, A-L., (2018). Comparing RNA Seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. Applications in Plant Sciences, 6(11): e01197, doi:10.1002/aps3.1197OSD-208
Detection of antimicrobial resistance genes associated with the International Space Station environmental surfacesUrbaniak, C., Sielaff, A. C., Frey, K. G., Allen, J. E., Singh, N., Jaing, C., . . . Venkateswaran, K. (2018). Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces. Sci Rep, 8(1), 814. doi:10.1038/s41598-017-18506-4OSD-66
Draft Genome Sequence of a Clinical Isolate of Fusarium fujikuroi Isolated from a Male Patient with Acute Myeloid LeukemiaUrbaniak, C., Dadwal, S., Bagramyan, K., & Venkateswaran, K. (2018). Draft Genome Sequence of a Clinical Isolate of Fusarium fujikuroi Isolated from a Male Patient with Acute Myeloid Leukemia. Genome Announc, 6(25). doi:10.1128/genomeA.00476-18
Draft Genome Sequences of Two Fusarium oxysporum Isolates Cultured from Infected Zinnia hybrida Plants Grown on the International Space StationUrbaniak, C., Massa, G., Hummerick, M., Khodadad, C., Schuerger, A., & Venkateswaran, K. (2018). Draft Genome Sequences of Two Fusarium oxysporum Isolates Cultured from Infected Zinnia hybrida Plants Grown on the International Space Station. Genome Announc, 6(20). doi:10.1128/genomeA.00326-18OSD-177
Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 miceWard, C., Rettig, T. A., Hlavacek, S., Bye, B. A., Pecaut, M. J., & Chapes, S. K. (2018). Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice. Life Sci Space Res (Amst), 16, 63-75. doi:10.1016/j.lssr.2017.11.003OSD-164
Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strainsSingh, N. K., Bezdan, D., Checinska Sielaff, A., Wheeler, K., Mason, C. E., & Venkateswaran, K. (2018). Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol, 18(1), 175. doi:10.1186/s12866-018-1325-2OSD-67
Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfacesSingh, N. K., Wood, J. M., Karouia, F., & Venkateswaran, K. (2018). Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome, 6(1), 214. doi:10.1186/s40168-018-0609-yOSD-69
Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflightJohnson, C. M., Subramanian, A., Pattathil, S., Correll, M. J., & Kiss, J. Z. (2017). Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Am J Bot, 104(8), 1219-1231. doi:10.3732/ajb.1700079OSD-121
Draft Genome Sequences from a Novel Clade of Bacillus cereus Sensu Lato Strains, Isolated from the International Space StationVenkateswaran, K., Checinska Sielaff, A., Ratnayake, S., Pope, R. K., Blank, T. E., Stepanov, V. G., . . . Bergman, N. H. (2017). Draft Genome Sequences from a Novel Clade of Bacillus cereus Sensu Lato Strains, Isolated from the International Space Station. Genome Announc, 5(32). doi:10.1128/genomeA.00680-17OSD-64
Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?Paul, A. L., Sng, N. J., Zupanska, A. K., Krishnamurthy, A., Schultz, E. R., & Ferl, R. J. (2017). Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS One, 12(6), e0180186. doi:10.1371/journal.pone.0180186OSD-120
Growth in spaceflight hardware results in alterations to the transcriptome and proteomeBasu, P., Kruse, C. P. S., Luesse, D. R., & Wyatt, S. E. (2017). Growth in spaceflight hardware results in alterations to the transcriptome and proteome. Life Sci Space Res (Amst), 15, 88-96. doi:10.1016/j.lssr.2017.09.001OSD-38
Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?Pecaut, M. J., Mao, X. W., Bellinger, D. L., Jonscher, K. R., Stodieck, L. S., Ferguson, V. L., . . . Gridley, D. S. (2017). Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism? PLoS One, 12(5), e0174174. doi:10.1371/journal.pone.0174174OSD-108, OSD-125
Nanopore DNA Sequencing and Genome Assembly on the International Space StationCastro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H., McIntyre, A. B. R., . . . Burton, A. S. (2017). Nanopore DNA Sequencing and Genome Assembly on the International Space Station. Sci Rep, 7(1), 18022. doi:10.1038/s41598-017-18364-0OSD-84
Non-Toxin-Producing Bacillus cereus Strains Belonging to the B. anthracis Clade Isolated from the International Space StationVenkateswaran, K., Singh, N. K., Checinska Sielaff, A., Pope, R. K., Bergman, N. H., van Tongeren, S. P., . . . Perry, J. (2017). Non-Toxin-Producing Bacillus cereus Strains Belonging to the B. anthracis Clade Isolated from the International Space Station. mSystems, 2(3). doi:10.1128/mSystems.00021-17OSD-64
Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thalianaKruse, C. P. S., Basu, P., Luesse, D. R., & Wyatt, S. E. (2017). Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thaliana. PLoS One, 12(4), e0175943. doi:10.1371/journal.pone.0175943OSD-38
Whole metagenome profiles of particulates collected from the International Space Station.Be, N. A., Avila-Herrera, A., Allen, J. E., Singh, N., Sielaff, A. C., Jaing, C., & Venkateswaran, K. (2017). Whole meta genome profiles of particulates collected from the International Space Station. Microbiome, 5:81, doi.org/10.1186/s40168-017-0292-4OSD-64
Draft Genome Sequences of Biosafety Level 2 Opportunistic Pathogens Isolated from the Environmental Surfaces of the International Space StationChecinska Sielaff, A., Singh, N. K., Allen, J. E., Thissen, J., Jaing, C., & Venkateswaran, K. (2016). Draft Genome Sequences of Biosafety Level 2 Opportunistic Pathogens Isolated from the Environmental Surfaces of the International Space Station. Genome Announc, 4(6). doi:10.1128/genomeA.01263-16OSD-67
Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stressAbshire, C., Prasai, K., Soto, I., Shi, R., Concha, M., Baddoo, M., Flemington, E. K., Ennis, D. G., Scott, R. S., Harrison, L. (2016). Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress. npc Microgravity 2, 16038 (2016). doi.org/10.1038/npjmgrav.2016.38OSD-90
Spaceflight Activates Lipotoxic Pathways in Mouse LiverJonscher, K. R., Alfonso-Garcia, A., Suhalim, J. L., Orlicky, D. J., Potma, E. O., Ferguson, V. L., . . . Pecaut, M. J. (2016). Correction: Spaceflight Activates Lipotoxic Pathways in Mouse Liver.PLoS One, 11(5), e0155282. doi:10.1371/journal.pone.0155282OSD-25
Molecular effects of spaceflight in the mouse eye after space shuttle mission STS-135Theriot, C. A., Zanello, S. B., (2014). Molecular effects of spaceflight in the mouse eye after space shuttle mission STS-35. Gravitational and Space Research: publication of the American Society for Gravitational and Space Research, 2(1), 08-2014.OSD-87
Spaceflight Transcriptomes: Unique Responses to a Novel EnvironmentPaul, A. L., Zupanska, A. K., Ostrow, D. T., Zhang, Y., Sun, Y., Li, J. L., Shanker, S., Farmerie, W. G., Amalfitano, C. E., Ferl, R. J. (2012). Spaceflight Transcriptomes: Unique Responses to a Novel Environment, Astrobiology. 2012 Jan;12(1):40-56. doi: 10.1089/ast.2011.0696.
Complete Genome Sequence of Klebsiella quasipneumoniae subsp. similipneumoniae Strain IF3SW-P1, Isolated from the International Space StationSushenko N S, Singh N K, Vellone D L, Tighe S W, Hedlund B P, Venkateswaran K, Mose D P (2022). Complete Genome Sequence of Klebsiella quasipneumoniae subsp. similipneumoniae Strain IF3SW-P1, Isolated from the International Space Station, Microbiol Resour Annonc. doi: 10.1128/mra.00476-22. Epub 2022 Jun 23.OSD-470
Spaceflight influences gene expression, photoreceptor integrity and oxidative stress-related damage in the murine retinaOverbey, E. G., da Silveira, W. A., Stanbouly, S., Nishiyama, N.C., Roque-Torres, G. D., Pecaut, M. J., Zawieja, D. C., Wang, C., Willey, J. S., Delp, M. D., Hardiman, G., Mao, X. W.OSD-255

OSDR Publications in the News – 74

TitleDescriptionDatasets
Advancing Science in Microgravity – Implications for Effective TherapiesRangdal A, Munoz S, Ma C, De Lorenzo M S, Sherman L S (2025). Advancing Science in Microgravity – Implications for Effective Therapies, International Journal of Translational Science. https://doi.org/10.13052/ijts2246-8765.2025.001
Critical investments in bioregenerative life support systems for bioastronautics and sustainable lunar explorationPorterfield D M, Tulodziecki D, Wheeler R, Cross M K D, Monje O, Rothschild L J, Barker R J, et al (2025). Critical investments in bioregenerative life support systems for bioastronautics and sustainable lunar exploration, NPJ Microgravity. doi: 10.1038/s41526-025-00518-4
LEAF – Lunar Effects on Agricultural Flora, An Artemis III Deployed InstrumentJeseritz S J, Chamerlain C M, Escobar A C, Levy E R D, Jones M, Delong N, Sumler K, et al, (2025). LEAF – Lunar Effects on Agricultural Flora, An Artemis III Deployed Instrument, 54th International Conferece on Environmental Systems.
Space Radiation Book Chapter: Health Impacts of Radiation in Space and CountermeasuresTasoula A, Poignant F, Guarnieri J W, Schwertz H, Nelson G A, (2025). Space Radiation Book Chapter: Health Impacts of Radiation in Space and Countermeasures.
Exploring plant responses to altered gravity for advancing space agricultureNie H, Zhou W, Zheng Z, Deng Y, Zhang W, Zhang M, Jiang Z, et al, (2025). Exploring plant responses to altered gravity for advancing space agriculture, Plant Communications. https://doi.org/10.1016/j.xplc.2025.101370
The utility of animal models to inform the next generation of human space explorationDuporge I, Pereira T, Castiello de Obeso S, Ross J G B, Lee S J, Hindle A G, (2025). The utility of animal models to inform the next generation of human space exploration, Microgravity. https://doi.org/10.1038/s41526-025-00460-5
Satellite ISS Velocity Analysis in Earth OrbitLutz K, (2025). Satellite ISS Velocity Analysis in Earth Orbit, SctTech 2025, Atmospheric and Space Enrionments II Session.
Astronaut proteomics: Japan leads the way for transformative studies in spaceTasoula A and Szewczyk N (2024). Astronaut proteomics: Japan leads the way for transformative studies in space, Proteomics. https://doi.org/10.1002/pmic.202300645
Gravitational and mechanical forces drive mitochondrial translation through the cell adhesion–FAK axisWakigawa T, Kimura Y, Mito M, Tsubaki T, Saito H, Khan A H, Yamamori T, et al (2024). Gravitational and mechanical forces drive mitochondrial translation through the cell adhesion–FAK axis, bioRxiv. https://doi.org/10.1101/2023.01.18.524628
Leveraging Geospatial Information to address Space EpidemiologySobel A L, Yeh K, Bradford E, Price C, Russell J, Olinger G, Grant S, et al (2024). Leveraging Geospatial Information to address Space Epidemiology, Arxiv.
https://arxiv.org/ftp/arxiv/papers/2308/2308.07339.pdf
3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq dataTabaro F, Boulard M, (2024). 3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data, Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbae467
Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainabilityNickerson C A, McLean R J C, Barrila J, Yang J, Thornhill S G, Banken L L, Porterfield D M,et al, (2024). Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability, Microbiol Mol Biol Rev. https://journals.asm.org/doi/10.1128/mmbr.00144-23
Differential network analysis reveals the key role of the ECM-receptor pathway in α-particle-induced malignant transformationYan W, Hu W, Song Y, Liu X, Zhou Z, Li W, Cao Z, et al, (2024). Differential network analysis reveals the key role of the ECM-receptor pathway in α-particle-induced malignant transformation, Molecular Therapy Nucleic Acids. doi: 10.1016/j.omtn.2024.102260
Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screeningKim S, Ayan B, Shayan M, Rando T A, Huang N F, (2024). Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening, Stem Cell Reports. doi: 10.1016/j.stemcr.2024.06.010
A second space age spanning omics, platforms, and medicine across orbitsMason C E, Green J, Adamopoulos K I, Afshin E E, Baechle J J, Basner M, Bailey S M, et al, (2024). A second space age spanning omics, platforms, and medicine across orbits, Nature. doi: 10.1038/s41586-024-07586-8
Astronaut omics and the impact of space on the human body at scaleRutter L A, Cope H, MacKay M J, Herranz R, Das S, Ponomarev S A, Costes, S V, et al, (2024). Astronaut omics and the impact of space on the human body at scale, Nature Communications. doi: 10.1038/s41467-024-47237-0
Biological horizons: pioneering open science in the cosmosCostes S V, Gentemann C L, Platts S H, Carnell L A, (2024). Biological horizons: pioneering open science in the cosmos, Nature Communications. doi: 10.1038/s41467-024-48633-2
Understanding how space travel affects the female reproductive systemMathyk B, Imudia A N, Quaas A M, Halicigil C, Karouia F, Avci P, Nelson N G, et al, (2024). Understanding how space travel affects the female reproductive system, npj Women’s Health. doi: 10.1038/s44294-024-00009-z
Domains of life sciences in spacefaring: What, where, and how to get involvedBerliner A J, Zezulka S, Hutchinson G A, Bertoldo S, Cockell C S, Arkin A P, (2024). Domains of life sciences in spacefaring: What, where, and how to get involved, npj Microgravity. DOI: 10.1038/s41526-024-00354-y
How to obtain an integrated picture of the molecular networks involved in adaptation to microgravity in different biological systems?Willis C R G, Calvaruso M, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, et al, (2024). How to obtain an integrated picture of the molecular networks involved in adaptation to microgravity in different biological systems?, npj microgravity. doi.org/10.1038/s41526-024-00395-3
Long-term space missions’ effects on the human organism: What we do know and what requires further researchTomsia M, Cie la J, mieszek J, Florek S, Macionga A, Michalczyk K, Stygar D, (2024). Long-term space missions’ effects on the human organism: What we do know and what requires further research., Frontiers in Physiology. DOI 10.3389/fphys.2024.1284644
Metabolomic Profiling of the Secretome from Human Neural Stem Cells Flown into SpaceBiancotti J C, Espinosa-Jeffrey A, (2024). Metabolomic Profiling of the Secretome from Human Neural Stem Cells Flown into Space, bioengineering. doi.org/10.3390/bioengineering11010011
Mitochondrial stress in the spaceflight environmentRudolf A M and Hood W R, (2024). Mitochondrial stress in the spaceflight environment, Mitochondrion. doi.org/10.1016/j.mito.2024.101855
Nitrosative Stress in Astronaut Skeletal Muscle in SpaceflightBlottner D, Moriggi M, Trautmann G, Furlan S, Block K, Gutsmann M, Torretta E, et al, (2024). Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight, antioxidants. doi.org/10.3390/antiox13040432
Omics Studies of Tumor Cells under Microgravity ConditionsGraf J, Herbert S, Wehland M, Corydon T J, Sahana J, Abdelfattah F, Wuest S L, et al, (2024). Omics Studies of Tumor Cells under Microgravity Conditions, International Journal of Molecular Sciences. doi.org/10.3390/ijms25020926
Procrustes is a machine-learning approach that removes cross-platform batch effects from clinical RNA sequencing dataKotlov N, Shaposhnikov K, Tazearslan C, Chasse M, Baisangurov A, Podsvirova S, Fernandez D, et al, (2024). Procrustes is a machine-learning approach that removes cross-platform batch effects from clinical RNA sequencing data, communications biology. doi.org/10.1038/s42003-024-06020-z
Roadmap for the next decade of plant programmed cell death researchKacprzyk J, Burke R, Armengot L, Coppola M, Tattrie S B, Vahldick H, Bassham D C, et al, (2024). Roadmap for the next decade of plant programmed cell death research, New Phytologist. doi.org/10.1111/nph.19709
Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissuesRen Z, Ahn E H, Do M, Mair D B, Monemianesfahani A, Lee P H U, Kim D H, (2024). Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues, npj Microgravity. DOI: 10.1038/s41526-024-00353-z
The use of RNA-seq for the study of Physiological Adaptations of Halophiles in Extreme Environments for Astrobiological Data InterpretationBasu C and Perl S M, (2024). The use of RNA-seq for the study of Physiological Adaptations of Halophiles in Extreme Environments for Astrobiological Data Interpretation, Frontiers. DOI 10.3389/fspas.2024.1342694
Translating genetic findings to epigenetics: identifying the mechanisms associated with aging after high-radiation exposure on earth and in spaceRuprecht N A, Singhal S, Sens D, Singhal S K, (2024). Translating genetic findings to epigenetics: identifying the mechanisms associated with aging after high-radiation exposure on earth and in space, Frontiers In Public Health. DOI 10.3389/fpubh.2024.1333222
Caenorhabditis elegans in microgravity: an omics perspectiveScott A, Willis C R G, Muratani M, Higashitani A, Etheridge T, Szewczyk N J, Deane C S, (2023). Caenorhabditis elegans in microgravity: an omics perspective, iScience.
https://doi.org/10.1016/j.isci.2023.107189
Big Data for a Small World: A Review on Databases and Resources for Studying MicrobiomesSengupta P, Sivabalan S K M, Mahesh A, Palanikumar I, Baskaran D K K, and Raman K (2023). Big Data for a Small World: A Review on Databases and Resources for Studying Microbiomes, Journal of the Indian Institute of Science.
Biological research and self-driving labs in deep space supported by artificial intelligenceSanders L M , Scott R T , Yang J H , Qutub A A, Martin H G, Berrios D C, Hastings J J A , et al, (2023). Biological research and self-driving labs in deep space supported by artificial intelligence, nature machine intelligence. doi.org/10.1038/s42256-023-00618-4
Biomonitoring and precision health in deep space supported by artificial intelligenceScott R T, Sanders L M, Antonsen E L, Hastings J J A, Park S M, Mackintosh G, Reynolds R J, et al, (2023). Biomonitoring and precision health in deep space supported by artificial intelligence, nature machine intelligence. doi.org/10.1038/s42256-023-00617-5
Current Knowledge about the Impact of Microgravity on Gene RegulationCorydon T J, Schulz H, Richter P, Strauch S M, Böhmer M, Ricciardi D A, Wehland M, et al (2023). Current Knowledge about the Impact of Microgravity on Gene Regulation, Cells doi.org/10.3390/cells12071043
Database of space life investigations and information on spacefight plant biologyWang S, Wang J, Zeng X, Wang T, Yu Z, Wei Y, Cai M, et al (2023). Database of space life investigations and information on spacefight plant biology, Planta. DOI: 10.1007/s00425-023-04213-0
Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space researchManzano A, Weging S, Bezdan D, Borg J, Cahill T, Carnero-Diaz E, Cope H, et al (2023). Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space research, iScience. DOI: 10.1016/j.isci.2023.107289
Exploratory Tool for Radiation Exposure from Spaceflight: Rad-Bio-AppGhosh D, Verma E, Ghosh R K, and Anderson T, (2023). Exploratory Tool for Radiation Exposure from Spaceflight: Rad-Bio-App, International Journal of Medical Science and clinical Invention. DOI:10.18535/ijmsci/v10i1.03
Exploring outer space biophysical phenomena via SpaceLIDWang S, Wang T, Zeng X, Chu X, Zhuoma D, Zhao Y, and Chen Y Z, (2023). Exploring outer space biophysical phenomena via SpaceLID, Scientific Reports. DOI: 10.1038/s41598-023-44729-9
Lab Medicine in SpaceWiencek J R, Das S, Beheshti A, Crucian B E, Karouia F, Trudel G, and McMonigalm K A, (2023). Lab Medicine in Space, Clinical Chemistry. doi.org/10.1093/clinchem/hvad035
Metagenomic Methods for Addressing NASA’s Planetary Protection Policy Requirements on Future Missions: A Workshop ReportGreen S J, Torok T, Allen J E, Eloe-Fadrosh E, Jackson S A, Jiang S C, Levine S S, et al (2023). Metagenomic Methods for Addressing NASA’s Planetary Protection Policy Requirements on Future Missions: A Workshop Report, Astrobiology. DOI: 10.1089/ast.2022.0044
Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate CyclesRichardson R B, and Mailloux R J, (2023). Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles, Antioxidants. doi.org/10.3390/antiox12030674
Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agricultureRenaud C, Leys N, and Wattiez R (2023). Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture, Journal of Plant Interactions. DOI: 10.1080/17429145.2023.2242697
Plant Reactome Knowledgebase: empowering plant pathway exploration and OMICS data analysisGupta P, Elser J, Hooks E, D’Eustachio P, Jaiswal P, and Naithani S, (2023). Plant Reactome Knowledgebase: empowering plant pathway exploration and OMICS data analysis, Nucleic Acids Research. DOI: 10.1093/nar/gkad1052
RNA-Seq Alignment and Differential Expression Software ComparisonMunster S K, Nicholson S J, Uyhelji H A (2023). RNA-Seq Alignment and Differential Expression Software Comparison, Civil Aerospace Medical Institute (CAMI) Federal Aviation Administration. doi.org/10.21949/1524443
Spaceflight Induces Strength Decline in Caenorhabditis elegansSoni P, Edwards H, Anupom T, Rahman M, Lesanpezeshki L, Blawzdziewicz J, Cope H, et al (2023). Spaceflight Induces Strength Decline in Caenorhabditis elegans, Cells. DOI: 10.3390/cells12202470
A Sankofian appraisal on how to maximize translatability of rodent space radiation/CNS studies to astronautsBrittena R A, Sanford L D, Guo M L, Krishnan B, Emmett M R, Laiakis E C, (2022). A Sankofian appraisal on how to maximize translatability of rodent space radiation/CNS studies to astronauts,” The Health Risks of Extraterrestrial Environments (THREE).
Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflightHenrich M, Ha P, Wang Y, Ting K, Stodieck L, Soo C, Adams J S, et al (2022). Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight, Skeletal Muscle. doi.org/10.1186/s13395-022-00294-9
Benchmark dose modeling of transcriptional data: a systematic approach to identify best practices for study designs used in radiation researchStainforth R, Vuong N, Adam N, Kuo B, Wilkins R C, Yauk C, Beheshti B, et al, (2022). Benchmark dose modeling of transcriptional data: a systematic approach to identify best practices for study designs used in radiation research, International Journal of Radiation Biology. doi.org/10.1080/09553002.2022.2110300.
Building the Space Omics Topical Team to boost European space researchers’ role in the international consortia redefining spaceflight-generated datasetsHerranz R, da Silveira W, Bezdan D, Giacomello S, and Szewczyk N (2022). Building the Space Omics Topical Team to boost European space researchers’ role in the international consortia redefining spaceflight-generated datasets, iScience. doi: 10.1016/j.isci.2022.10486
Clinical trial in a dish for space radiation countermeasure discovery.Cao X, Weil M M, Wu J C, (2022). Clinical trial in a dish for space radiation countermeasure discovery, Life Sci Space Res. doi.org/10.1016/j.lssr.2022.05.006
Data Processing as Sharing Practice: Making Space Plant Biology at NASA GeneLabCastano P, (2022). Data Processing as Sharing Practice: Making Space Plant Biology at NASA GeneLab, The 9th biennial conference of the Society for Philosophy of Science in Practice, pg 64-65.
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines?Lau P, Vico L, and Rittweger J, (2022). Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines?, Biomedicines. doi.org/10.3390/biomedicines10020342
Estrogen receptor regulates phenotypic switching and proliferation of vascular smooth muscle cells through the NRF1-OMI-mitophagy signaling pathway under simulated microgravityJiang M, Liu Z, Shao J, Zhou J, Wang H, Song C, Li X, et al, (2022). Estrogen receptor regulates phenotypic switching and proliferation of vascular smooth muscle cells through the NRF1-OMI-mitophagy signaling pathway under simulated microgravity, Frontiers. doi: 10.3389/fphys.2022.1039913
From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in SpaceLocatelli L, Castiglioni S, Maier J A M, (2022). From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space, Front Bioeng Biotechnol. doi: 10.3389/fbioe.2022.862059
Integrating bioinformatic strategies in spatial life science researchHao Y, Lu L, Liu A, Lin X, Xiao L, Kong X, Li K, et al (2022). Integrating bioinformatic strategies in spatial life science research, Briefings in Bioinformatics. doi.org/10.1093/bib/bbac415
Inter-agency perspective: Translating advances in biomarker discovery and medical countermeasures development between terrestrial and space radiation environmentsDiCarlo A L, Carnell L S, Rios C I, Prasanna P G, (2022). Inter-agency perspective: Translating advances in biomarker discovery and medical countermeasures development between terrestrial and space radiation environments, Life Sciences in Space Research. doi.org/10.1016/j.lssr.2022.06.004
Latest knowledge about changes in the proteome in microgravitySchulz H, Strauch S M, Richter P, Wehland M, Krüger M, Sahana J, Corydon T J, et al, (2022). Latest knowledge about changes in the proteome in microgravity, Expert Review of Proteomics. doi.org/10.1080/14789450.2022.2030711
Meta-analysis of health research data from greater than three months International Space Station missionsKunitskaya A, PiretJ M, Buckley N, Low-Décarie E (2022). Meta-analysis of health research data from greater than three months International Space Station missions, Acta Astronautica. doi.org/10.1016/j.actaastro.2022.09.019
Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studiesMillar-Wilson A, Ward Ó, Duffy E, Hardiman G, (2022). Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies, iScience. doi: 10.1016/j.isci.2022.105421
Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature.Russo C D, Bandiera T, Monici M, Surdo L, Yip V L M, Wotring V, Morbidelli L, (2022). Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature, British Journal of Pharmacology. DOI: 10.22541/au.162636523.37754419/v1
Plants in Microgravity: Molecular and Technological PerspectivesBaba A I, Mir M Y, Riyazuddin R, Cséplo A, Rigó G, and Fehér A (2022). Plants in Microgravity: Molecular and Technological Perspectives, International Journal of Molecular Sciences. doi.org/10.3390/ijms2318105487
Rare diseases and space health: Optimizing synergies from scientific questions to carePuscas M, Martineau G, Bhella G, Bonnen P E, Carr P, Lim R, Mitchell J, et al, (2022). Rare diseases and space health: Optimizing synergies from scientific questions to cares, NPJ Microgravity. doi: 10.1038/s41526-022-00224-5
Routine omics collection is a golden opportunity for European human research in space and analog environmentsCope H, Willis C R G, MacKay M J, Rutter L A, Toh L S, Williams P M, Herranz R, et al, (2022). Routine omics collection is a golden opportunity for European human research in space and analog environments, Patterns. doi.org/10.1016/j.patter.2022.100550
The Biological Problems of Space TravelReid M, (2022). The Biological Problems of Space Travel, Ideas Magazine.
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis ModelGrimm D, Schulz H, Krüger M, Cortés-Sánchez J L, Egli M, Kraus A, Sahana J, et al, (2022). The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model, International Journal of Molecular Sciences. doi.org/10.3390/ijms23063073.
The mitochondrial proteomic changes of rat hippocampus induced by 28-day simulated microgravityJi G, Chang H, Yang M, Chen H, Wang T, Liu X, Lv K, et al, (2022). The mitochondrial proteomic changes of rat hippocampus induced by 28-day simulated microgravity, PLOS ONE. doi.org/10.1371/journal. pone.0265108.
Validating Causal Diagrams of Human Health Risks for Spaceflight: An Example Using Bone Data from RodentsReynolds R J, Scott R T, Turner R T, Iwaniec U T, Bouxsein M L, Sanders L M, and Antonsen E L, (2022). Validating Causal Diagrams of Human Health Risks for Spaceflight: An Example Using Bone Data from Rodents, Biomedicines. doi.org/10.3390/biomedicines10092187
A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene ExpressionMichalettou T D, Michalopoulos I, Costes S V, Hellweg C E, Hada M, and Georgakilas A G, (2021). A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression, Life. doi.org/10.3390/ life11020115
Animal Models for Radiotherapy Research: All (Animal) Models Are Wrong but Some Are UsefulButterworth K T, and Williams J P, (2021). Animal Models for Radiotherapy Research: All (Animal) Models Are Wrong but Some Are Useful, Cancers. doi.org/10.3390/cancers 13061319
Animal models, open science, & space-omicsNeff E P, (2021). Animal models, open science, & space-omics, Lab Animal. doi.org/10.1038/s41684-021-00776-1
Cyanobacteria and microalgae in supporting human habitation on MarsMapstone L J, Leite M N, Purton S, Crawford I A, Dartnell L, (2021). Cyanobacteria and microalgae in supporting human habitation on Mars, Biotechnology Advances. doi.org/10.1016/j.biotechadv.2022.107946OSD-265
Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human CellsBeheshti A, McDonald J T, Hada M, Takahashi A, Mason C E, and Mognato M, (2021). Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells, International Journal of Molecular Sciences. doi.org/10.3390/ijms221910507
Conducting Plant Experiments in Space and on the MoonShymanovich T and Kiss J Z, (2022). Conducting Plant Experiments in Space and on the Moon, Plant Gravitropism Methods in Molecular Biology. doi: 10.1007/978-1-0716-1677-2_12



Student Publications – 15

TitleDescriptionDatasets
Spaceflight-Induced Physiological Changes: A Computational Comparative Analysis of Drosophila and C. elegansMathew A (2025). Spaceflight-Induced Physiological Changes: A Computational Comparative Analysis of Drosophila and C. elegans. [Bachelor of Science Thesis, Honors Tutorial College Ohio University].
OSD-514
Methods To Develop An 8-Oxog Base Modification Classifier For Direct-Dna Nanopore SequencingArikatla M R (2024). Methods To Develop An 8-Oxog Base Modification Classifier For Direct-Dna Nanopore Sequencing. [Master’s Thesis, Weill Cornell Graduat School of Medical Sciences.]OSD-255
Detecting de novo Insertions of Transposable Elements in the Human GenomeMcConnell J (2024). Detecting de novo Insertions of Transposable Elements in the Human Genome. [Master’s Thesis, The University of Adelaid. OSD-84
The Architecture of Microgravity EnvironmentsSoto R R, (2024). The Architecture of Microgravity Environments. [Master’s Thesis, Carleton University. DOI: https://doi.org/10.22215/etd/2024-16005
Differential Gene Expression Analysis of Rodent Mammary Tissue Reveals Dysregulation of Greb1 and an Age-Dependent Response to SpaceflightArnold C (2023). Differential Gene Expression Analysis of Rodent Mammary Tissue Reveals Dysregulation of Greb1 and an Age-Dependent Response to Spaceflight. [Master’s Thesis, San Jose State University]. DOI: https://doi.org/10.31979/etd.53cj-bbgqOSD-511
Select Pathways Revealed in A. Thaliana During Spaceflight Via Meta-Analysis of National Aeronautics and Space Administration Genelab DataBaham, Z T, (2023). Select Pathways Revealed in A. Thaliana During Spaceflight Via Meta-Analysis of National Aeronautics and Space Administration Genelab Data. [Master’s Thesis, Louisiana Tech University].OSD-7, OSD-38, OSD-120, OSD-205, OSD-213, OSD-251, OSD-314, OSD-469
Characterizing the relative biologic effectiveness following clinical and space-relevant ionizing radiation exposures and exploring curcumin nanoparticles as effective radiological countermeasuresEvans A C, (2022). Characterizing the relative biologic effectiveness following clinical and space-relevant ionizing radiation exposures and exploring curcumin nanoparticles as effective radiological countermeasures. [Doctoral thesis, University of California Davis].
Computational techniques for simulation and design of a biological sample irradiation chamberGiunta E, (2022). Computational techniques for simulation and design of a biological sample irradiation chamber. [Master’s Thesis, Kansas State University].
Differential Gene Expression Analysis of Zebrafish Embryos Exposed to Simulated Microgravity and Insights into Cellular EffectsLien N, (2022). Differential Gene Expression Analysis of Zebrafish Embryos Exposed to Simulated Microgravity and Insights into Cellular Effects. [Master’s Projects, San Jose State University]. Master’s Thesis and Graduate Research.OSD-373, OSD-289
Effects of Aeration on Soybean Plant Growth in Lunar and Martian RegolithJosh Bailey, Kyra Keenan, Alessandro Paz, Riya Dharmendra Raj, Madelyn Whitaker, Brian Wodetzki, Autumn Wuebben, (2022). Effects of Aeration on Soybean Plant Growth in Lunar and Martian Regolith. [Purdue Interplanetary and Space Agriculture, Undergraduate Division].
The role of osteocytes in mechanical unloading and age-induced osteopeniaUda Y, (2022). The role of osteocytes in mechanical unloading and age-induced osteopenia. [Boston University]. Doctoral dissertation.OSD-50, OSD-107
An Examination of Bone Loss During Space Travel with Differential Gene Expression AnalysisVo C, (2021). An Examination of Bone Loss During Space Travel with Differential Gene Expression Analysis. [Master’s Projects, San Jose Sate University]. Master’s Theses and Graduate Research. DOI: https://doi.org/10.31979/etd.an9m-wtkdOSD-241
Effects Of Microgravity and Partial Gravity and the Influence of Photostimulation on Plant Adaptation to SpaceflightCalvo A V, (2021). Effects of Microgravity and Partial Gravity and the Influence of Photostimulation on Plant Adaptation to Spaceflight. [Doctoral thesis, Universidad Autónoma de Madrid]. CSIC – Centro de Investigaciones Biológicas Margarita Salas (CIB). http://hdl.handle.net/10261/253186OSD-251, OSD-313, OSD-314
Spaceflight and Differential Gene Expression Analysis of Mice Quadriceps Exposed to MicrogravityNguyen T, (2021). Spaceflight and Differential Gene Expression Analysis of Mice Quadriceps Exposed to Microgravity. [Master’s Projects, San Jose Sate University]. Master’s Theses and Graduate Research. DOI: https://doi.org/10.31979/etd.4tt8-8a9hOSD-103
Spaceflight and the Differential Gene Expression of Human Stem Cell-Derived CardiomyocytesZhu E, (2021). Spaceflight and the Differential Gene Expression of Human Stem Cell-Derived Cardiomyocytes. [Master’s Projects, San Jose Sate University]. Master’s Theses and Graduate Research. DOI: https://doi.org/10.31979/etd.ub3z-s62yOSD-258